Issue
Combating sars-cov-2 through lipoxins, proteasome, caveolin and nuclear factor-κb pathways in non-pregnant and pregnant populations
Corresponding Author(s) : Suleyman Aydin
Cellular and Molecular Biology,
Vol. 66 No. 3: Issue 3
Abstract
It can be misleading to think that the new severe acute respiratory syndrome coronavirus (SARS-CoV2) which has a very strong mutation and adaptation capabilities, uses only the angiotensin-converting enzyme II (ACE2) pathway to reach target cells. Despite all the precautions taken, the pandemic attack continues and the rapid increase in the number of deaths suggest that this virus has entered the cell through different pathways and caused damage through different mechanisms. The main reason why the ACE2 pathway comes to the fore in all scientific studies is that this receptor is located at the entry point of basic mechanisms that provide alveolo-capillary homeostasis. SARS-CoV-2 has to use nuclear factor-κB (NF-kB), caveloae, clathrin, lipoxin, serine protease and proteasome pathways in addition to ACE2 to enter the target cell and initiate damage. For this reason, while new drug development studies are continuing, in order to be beneficial to patients in their acute period, it is imperative that we are able to come up with drugs that activate or inhibit these pathways and are currently in clinical use. It is also critical that we adopt these new pathways to the treatment of pregnant women affected by SARS-CoV-2, based on the scientific data we use to treat the general population.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Zhou P, Yang X-L, Wang X-G et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-273.
- Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochemical and biophysical research communications 2020.
- Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland 2004; 203(2): 631-637.
- Wang H, Yuan X, Sun Y et al. Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology 2019; 528: 118-136.
- McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature reviews Molecular cell biology 2011; 12(8): 517.
- Joki-Korpela P, Marjomäki V, Krogerus C, Heino J, Hyypiä T. Entry of human parechovirus 1. Journal of Virology 2001; 75(4): 1958-1967.
- Marjomäki V, Pietiäinen V, Matilainen H et al. Internalization of echovirus 1 in caveolae. Journal of virology 2002; 76(4): 1856-1865.
- Inoue Y, Tanaka N, Tanaka Y et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. Journal of virology 2007; 81(16): 8722-8729.
- Wang L-H, Rothberg KG, Anderson R. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. The Journal of cell biology 1993; 123(5): 1107-1117.
- Wong S, Chow K, de Swiet M. Severe acute respiratory syndrome and pregnancy. BJOG: An International Journal of Obstetrics & Gynaecology 2003; 110(7): 641-642.
- Alfaraj SH, Al-Tawfiq JA, Memish ZA. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection during pregnancy: Report of two cases & review of the literature. Journal of microbiology, immunology, and infection= Wei mian yu gan ran za zhi 2019; 52(3): 501.
- Guan W-j, Ni Z-y, Hu Y et al. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine 2020.
- Berger A. Th1 and Th2 responses: what are they? Bmj 2000; 321(7258): 424.
- Chen H, Guo J, Wang C et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet 2020; 395(10226): 809-815.
- Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv 2020.
- Lyden TW, Anderson CL, Robinson JM. The endothelium but not the syncytiotrophoblast of human placenta expresses caveolae. Placenta 2002; 23(8-9): 640-652.
- Cheng JP, Nichols BJ. Caveolae: one function or many? Trends in cell biology 2016; 26(3): 177-189.
- Mineo C, Anderson RG. Potocytosis. Histochemistry and cell biology 2001; 116(2): 109-118.
- Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature cell biology 2000; 2(1): 42-49.
- Krishna A, Sengupta D. Interplay between membrane curvature and cholesterol: Role of palmitoylated caveolin-1. Biophysical journal 2019; 116(1): 69-78.
- Kogo H, Aiba T, Fujimoto T. Cell type-specific occurrence of caveolin-1α and-1β in the lung caused by expression of distinct mRNAs. Journal of Biological Chemistry 2004; 279(24): 25574-25581.
- Rothberg KG, Ying Y-S, Kamen BA, Anderson R. Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. The Journal of cell biology 1990; 111(6): 2931-2938.
- Wang H, Yang P, Liu K et al. SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway. Cell research 2008; 18(2): 290-301.
- Padhan K, Tanwar C, Hussain A et al. Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. Journal of General Virology 2007; 88(11): 3067-3077.
- Buckley S, Barsky L, Driscoll B, Weinberg K, Anderson KD, Warburton D. Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. American Journal of Physiology-Lung Cellular and Molecular Physiology 1998; 274(5): L714-L720.
- Cai Q-C, Jiang Q-W, Zhao G-M, Guo Q, Cao G-W, Chen T. Putative caveolin-binding sites in SARS-CoV proteins. Acta pharmacologica Sinica 2003; 24(10): 1051-1059.
- Garrean S, Gao X-P, Brovkovych V et al. Caveolin-1 regulates NF-κB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. The Journal of Immunology 2006; 177(7): 4853-4860.
- Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annual review of biochemistry 2010; 79: 803-833.
- Wang M, Cao R, Zhang L et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research 2020; 30(3): 269-271.
- Vincent MJ, Bergeron E, Benjannet S et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal 2005; 2(1): 69.
- Degtyarev M, De Mazière A, Orr C et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. The Journal of cell biology 2008; 183(1): 101-116.
- Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proceedings of the National Academy of Sciences 2004; 101(12): 4240-4245.
- Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience trends 2020.
- Magagnoli J, Narendran S, Pereira F et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv 2020: 2020.2004.2016.20065920.
- Zhou Y, Vedantham P, Lu K et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral research 2015; 116: 76-84.
- Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. Journal of virology 2010; 84(24): 12658-12664.
- Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020.
- Lu R, Zhao X, Li J et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 2020; 395(10224): 565-574.
- Glowacka I, Bertram S, Müller MA et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of virology 2011; 85(9): 4122-4134.
- Liu F, Xu A, Zhang Y et al. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. International Journal of Infectious Diseases 2020.
- Levy A, Yagil Y, Bursztyn M, Barkalifa R, Scharf S, Yagil C. ACE2 expression and activity are enhanced during pregnancy. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2008; 295(6): R1953-R1961.
- Linton E, Rodriguez-Linares B, Rashid-Doubell F, Ferguson D, Redman C. Caveolae and caveolin-1 in human term villous trophoblast. Placenta 2003; 24(7): 745-757.
- Li Y, Zhao R, Zheng S et al. Lack of Vertical Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, China. Emerging infectious diseases 2020; 26(6).
- Wysocki J, Ye M, Rodriguez E et al. Targeting the Degradation of Angiotensin II With Recombinant Angiotensin-Converting Enzyme 2: Prevention of Angiotensin II–Dependent Hypertension. Hypertension 2010; 55(1): 90-98.
- Imai Y, Kuba K, Penninger JM. The discovery of angiotensin"converting enzyme 2 and its role in acute lung injury in mice. Experimental physiology 2008; 93(5): 543-548.
- Skeggs L, Dorer F, Levine M, Lentz K, Kahn J. The biochemistry of the renin-angiotensin system. Advances in experimental medicine and biology 1980; 130: 1-27.
- Xiao H-L, Li C-S, Zhao L-X et al. Captopril improves postresuscitation hemodynamics protective against pulmonary embolism by activating the ACE2/Ang-(1-7)/Mas axis. Naunyn-Schmiedeberg's archives of pharmacology 2016; 389(11): 1159-1169.
- Supé S, Kohse F, Gembardt F, Kuebler WM, Walther T. Therapeutic time window for angiotensin"(1–7) in acute lung injury. British journal of pharmacology 2016; 173(10): 1618-1628.
- Furuhashi M, Moniwa N, Mita T et al. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. American journal of hypertension 2015; 28(1): 15-21.
- Gurwitz D. Angiotensin receptor blockers as tentative SARS"CoV"2 therapeutics. Drug development research 2020.
- Huentelman MJ, Zubcevic J, Hernandez Prada JA et al. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension 2004; 44(6): 903-906.
- Weber-Schoendorfer C, Kayser A, Tissen-Diabaté T et al. Fetotoxic risk of AT1 blockers exceeds that of angiotensin-converting enzyme inhibitors: an observational study. Journal of Hypertension 2020; 38(1): 133-141.
- Hoeltzenbein M, Tissen-Diabate T, Fietz A-K et al. Pregnancy outcome after first trimester use of angiotensin AT1 receptor blockers: an observational cohort study. Clinical Research in Cardiology 2018; 107(8): 679-687.
- Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clinical Science 2020; 134(5): 543-545.
- Chiang N, Takano T, Arita M, Watanabe S, Serhan CN. A novel rat lipoxin A4 receptor that is conserved in structure and function. British journal of pharmacology 2003; 139(1): 89-98.
- Filep JG. Biasing the lipoxin A4/formyl peptide receptor 2 pushes inflammatory resolution. Proceedings of the National Academy of Sciences 2013; 110(45): 18033-18034.
- Sekheri M, El Kebir D, Edner N, Filep JG. 15-Epi-LXA4 and 17-epi-RvD1 restore TLR9-mediated impaired neutrophil phagocytosis and accelerate resolution of lung inflammation. Proceedings of the National Academy of Sciences 2020.
- Ortiz-Muñoz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood, The Journal of the American Society of Hematology 2014; 124(17): 2625-2634.
- Kieran NE, Maderna P, Godson C. Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease. Kidney international 2004; 65(4): 1145-1154.
- Xia J, Zhou X-L, Zhao Y, Zhu Y-Q, Jiang S, Ni S-Z. Roles of lipoxin A4 in preventing paracetamol-induced acute hepatic injury in a rabbit model. Inflammation 2013; 36(6): 1431-1439.
- Mendelson CR. Role of transcription factors in fetal lung development and surfactant protein gene expression. Annual review of physiology 2000; 62(1): 875-915.
- Gilroy DW, Lawrence T, Perretti M, Rossi AG. Inflammatory resolution: new opportunities for drug discovery. Nature reviews Drug discovery 2004; 3(5): 401-416.
- Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014; 510(7503): 92-101.
- Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins, leukotrienes and essential fatty acids 2005; 73(3-4): 141-162.
- Chen Q-F, Kuang X-D, Yuan Q-F et al. Lipoxin A4 attenuates LPS-induced acute lung injury via activation of the ACE2-Ang-(1-7)-Mas axis. Innate immunity 2018; 24(5): 285-296.
- Lu W, Kang J, Hu K et al. Angiotensin-(1–7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats. Brazilian journal of medical and biological research 2016; 49(10).
- Chopra M, Reuben JS, Sharma AC. Acute lung injury: apoptosis and signaling mechanisms. Experimental biology and medicine 2009; 234(4): 361-371.
- Xia X, Cui J, Wang HY et al. NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 2011; 34(6): 843-853.
- Chan JF-W, Kok K-H, Zhu Z et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections 2020; 9(1): 221-236.
- Celik O, Hascalik S, Elter K, Tagluk M, Gurates B, Aydin N. Combating endometriosis by blocking proteasome and nuclear factor-κB pathways. Human reproduction 2008; 23(11): 2458-2465.
- Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-κB: its role in health and disease. Journal of molecular medicine 2004; 82(7): 434-448.
- Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet 2020; 395(10229): 1033-1034.
- Guo S-W. Nuclear factor-κB (NF-κB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecologic and obstetric investigation 2007; 63(2): 71-97.
- Adams J, Palombella VJ, Sausville EA et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer research 1999; 59(11): 2615-2622.
- Orlowski RZ, Stinchcombe TE, Mitchell BS et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. Journal of Clinical Oncology 2002; 20(22): 4420-4427.
- Cengiz Seval G, Beksac M. The safety of bortezomib for the treatment of multiple myeloma. Expert opinion on drug safety 2018; 17(9): 953-962.
- Horie S, Harada T, Mitsunari M, Taniguchi F, Iwabe T, Terakawa N. Progesterone and progestational compounds attenuate tumor necrosis factor alpha–induced interleukin-8 production via nuclear factor kappaB inactivation in endometriotic stromal cells. Fertility and sterility 2005; 83(5): 1530-1535.
- Mahey R, Kaur SD, Chumber S, Kriplani A, Bhatla N. Splenectomy during pregnancy: treatment of refractory immune thrombocytopenic purpura. Case Reports 2013; 2013: bcr2013201778.
- Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nature reviews Cancer 2014; 14(1): 13-25.
- Dou Q, Chen H-N, Wang K et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer research 2016; 76(15): 4457-4469.
- Kalil AC. Lack of Benefit of High-Dose Vitamin C, Thiamine, and Hydrocortisone Combination for Patients With Sepsis. Jama 2020; 323(5): 419-420.
- Gien J, Nuxoll C, Kinsella JP. Inhaled Nitric Oxide in Emergency Medical Transport of the Newborn. NeoReviews 2020; 21(3): e157-e164.
- Zhang C, Wu Z, Li J-W, Zhao H, Wang G-Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. International Journal of Antimicrobial Agents 2020: 105954.
- Thomas BJ, Porritt RA, Hertzog PJ, Bardin PG, Tate MD. Glucocorticosteroids enhance replication of respiratory viruses: effect of adjuvant interferon. Scientific reports 2014; 4(1): 1-11.
- Cortjens B, de Jong R, Bonsing JG, Van Woensel JB, Antonis AF, Bem RA. Local dornase alfa treatment reduces NETs-induced airway obstruction during severe RSV infection. Thorax 2018; 73(6): 578-580.
- Eulitz D, Mannherz HG. Inhibition of deoxyribonuclease I by actin is to protect cells from premature cell death. Apoptosis 2007; 12(8): 1511-1521.
- Papait A, Vertua E, Magatti M et al. Mesenchymal Stromal Cells from Fetal and Maternal Placenta Possess Key Similarities and Differences: Potential Implications for Their Applications in Regenerative Medicine. Cells 2020; 9(1): 127.
- Tsubosaka M, Matsumoto T, Sobajima S, Matsushita T, Iwaguro H, Kuroda R. The influence of adipose-derived stromal vascular fraction cells on the treatment of knee osteoarthritis. BMC musculoskeletal disorders 2020; 21: 1-10.
References
Zhou P, Yang X-L, Wang X-G et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-273.
Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochemical and biophysical research communications 2020.
Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland 2004; 203(2): 631-637.
Wang H, Yuan X, Sun Y et al. Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology 2019; 528: 118-136.
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature reviews Molecular cell biology 2011; 12(8): 517.
Joki-Korpela P, Marjomäki V, Krogerus C, Heino J, Hyypiä T. Entry of human parechovirus 1. Journal of Virology 2001; 75(4): 1958-1967.
Marjomäki V, Pietiäinen V, Matilainen H et al. Internalization of echovirus 1 in caveolae. Journal of virology 2002; 76(4): 1856-1865.
Inoue Y, Tanaka N, Tanaka Y et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. Journal of virology 2007; 81(16): 8722-8729.
Wang L-H, Rothberg KG, Anderson R. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. The Journal of cell biology 1993; 123(5): 1107-1117.
Wong S, Chow K, de Swiet M. Severe acute respiratory syndrome and pregnancy. BJOG: An International Journal of Obstetrics & Gynaecology 2003; 110(7): 641-642.
Alfaraj SH, Al-Tawfiq JA, Memish ZA. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection during pregnancy: Report of two cases & review of the literature. Journal of microbiology, immunology, and infection= Wei mian yu gan ran za zhi 2019; 52(3): 501.
Guan W-j, Ni Z-y, Hu Y et al. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine 2020.
Berger A. Th1 and Th2 responses: what are they? Bmj 2000; 321(7258): 424.
Chen H, Guo J, Wang C et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet 2020; 395(10226): 809-815.
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv 2020.
Lyden TW, Anderson CL, Robinson JM. The endothelium but not the syncytiotrophoblast of human placenta expresses caveolae. Placenta 2002; 23(8-9): 640-652.
Cheng JP, Nichols BJ. Caveolae: one function or many? Trends in cell biology 2016; 26(3): 177-189.
Mineo C, Anderson RG. Potocytosis. Histochemistry and cell biology 2001; 116(2): 109-118.
Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature cell biology 2000; 2(1): 42-49.
Krishna A, Sengupta D. Interplay between membrane curvature and cholesterol: Role of palmitoylated caveolin-1. Biophysical journal 2019; 116(1): 69-78.
Kogo H, Aiba T, Fujimoto T. Cell type-specific occurrence of caveolin-1α and-1β in the lung caused by expression of distinct mRNAs. Journal of Biological Chemistry 2004; 279(24): 25574-25581.
Rothberg KG, Ying Y-S, Kamen BA, Anderson R. Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. The Journal of cell biology 1990; 111(6): 2931-2938.
Wang H, Yang P, Liu K et al. SARS coronavirus entry into host cells through a novel clathrin-and caveolae-independent endocytic pathway. Cell research 2008; 18(2): 290-301.
Padhan K, Tanwar C, Hussain A et al. Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. Journal of General Virology 2007; 88(11): 3067-3077.
Buckley S, Barsky L, Driscoll B, Weinberg K, Anderson KD, Warburton D. Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. American Journal of Physiology-Lung Cellular and Molecular Physiology 1998; 274(5): L714-L720.
Cai Q-C, Jiang Q-W, Zhao G-M, Guo Q, Cao G-W, Chen T. Putative caveolin-binding sites in SARS-CoV proteins. Acta pharmacologica Sinica 2003; 24(10): 1051-1059.
Garrean S, Gao X-P, Brovkovych V et al. Caveolin-1 regulates NF-κB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. The Journal of Immunology 2006; 177(7): 4853-4860.
Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annual review of biochemistry 2010; 79: 803-833.
Wang M, Cao R, Zhang L et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research 2020; 30(3): 269-271.
Vincent MJ, Bergeron E, Benjannet S et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal 2005; 2(1): 69.
Degtyarev M, De Mazière A, Orr C et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. The Journal of cell biology 2008; 183(1): 101-116.
Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proceedings of the National Academy of Sciences 2004; 101(12): 4240-4245.
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience trends 2020.
Magagnoli J, Narendran S, Pereira F et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv 2020: 2020.2004.2016.20065920.
Zhou Y, Vedantham P, Lu K et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral research 2015; 116: 76-84.
Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. Journal of virology 2010; 84(24): 12658-12664.
Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020.
Lu R, Zhao X, Li J et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 2020; 395(10224): 565-574.
Glowacka I, Bertram S, Müller MA et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of virology 2011; 85(9): 4122-4134.
Liu F, Xu A, Zhang Y et al. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. International Journal of Infectious Diseases 2020.
Levy A, Yagil Y, Bursztyn M, Barkalifa R, Scharf S, Yagil C. ACE2 expression and activity are enhanced during pregnancy. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2008; 295(6): R1953-R1961.
Linton E, Rodriguez-Linares B, Rashid-Doubell F, Ferguson D, Redman C. Caveolae and caveolin-1 in human term villous trophoblast. Placenta 2003; 24(7): 745-757.
Li Y, Zhao R, Zheng S et al. Lack of Vertical Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, China. Emerging infectious diseases 2020; 26(6).
Wysocki J, Ye M, Rodriguez E et al. Targeting the Degradation of Angiotensin II With Recombinant Angiotensin-Converting Enzyme 2: Prevention of Angiotensin II–Dependent Hypertension. Hypertension 2010; 55(1): 90-98.
Imai Y, Kuba K, Penninger JM. The discovery of angiotensin"converting enzyme 2 and its role in acute lung injury in mice. Experimental physiology 2008; 93(5): 543-548.
Skeggs L, Dorer F, Levine M, Lentz K, Kahn J. The biochemistry of the renin-angiotensin system. Advances in experimental medicine and biology 1980; 130: 1-27.
Xiao H-L, Li C-S, Zhao L-X et al. Captopril improves postresuscitation hemodynamics protective against pulmonary embolism by activating the ACE2/Ang-(1-7)/Mas axis. Naunyn-Schmiedeberg's archives of pharmacology 2016; 389(11): 1159-1169.
Supé S, Kohse F, Gembardt F, Kuebler WM, Walther T. Therapeutic time window for angiotensin"(1–7) in acute lung injury. British journal of pharmacology 2016; 173(10): 1618-1628.
Furuhashi M, Moniwa N, Mita T et al. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. American journal of hypertension 2015; 28(1): 15-21.
Gurwitz D. Angiotensin receptor blockers as tentative SARS"CoV"2 therapeutics. Drug development research 2020.
Huentelman MJ, Zubcevic J, Hernandez Prada JA et al. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension 2004; 44(6): 903-906.
Weber-Schoendorfer C, Kayser A, Tissen-Diabaté T et al. Fetotoxic risk of AT1 blockers exceeds that of angiotensin-converting enzyme inhibitors: an observational study. Journal of Hypertension 2020; 38(1): 133-141.
Hoeltzenbein M, Tissen-Diabate T, Fietz A-K et al. Pregnancy outcome after first trimester use of angiotensin AT1 receptor blockers: an observational cohort study. Clinical Research in Cardiology 2018; 107(8): 679-687.
Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clinical Science 2020; 134(5): 543-545.
Chiang N, Takano T, Arita M, Watanabe S, Serhan CN. A novel rat lipoxin A4 receptor that is conserved in structure and function. British journal of pharmacology 2003; 139(1): 89-98.
Filep JG. Biasing the lipoxin A4/formyl peptide receptor 2 pushes inflammatory resolution. Proceedings of the National Academy of Sciences 2013; 110(45): 18033-18034.
Sekheri M, El Kebir D, Edner N, Filep JG. 15-Epi-LXA4 and 17-epi-RvD1 restore TLR9-mediated impaired neutrophil phagocytosis and accelerate resolution of lung inflammation. Proceedings of the National Academy of Sciences 2020.
Ortiz-Muñoz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood, The Journal of the American Society of Hematology 2014; 124(17): 2625-2634.
Kieran NE, Maderna P, Godson C. Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease. Kidney international 2004; 65(4): 1145-1154.
Xia J, Zhou X-L, Zhao Y, Zhu Y-Q, Jiang S, Ni S-Z. Roles of lipoxin A4 in preventing paracetamol-induced acute hepatic injury in a rabbit model. Inflammation 2013; 36(6): 1431-1439.
Mendelson CR. Role of transcription factors in fetal lung development and surfactant protein gene expression. Annual review of physiology 2000; 62(1): 875-915.
Gilroy DW, Lawrence T, Perretti M, Rossi AG. Inflammatory resolution: new opportunities for drug discovery. Nature reviews Drug discovery 2004; 3(5): 401-416.
Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014; 510(7503): 92-101.
Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins, leukotrienes and essential fatty acids 2005; 73(3-4): 141-162.
Chen Q-F, Kuang X-D, Yuan Q-F et al. Lipoxin A4 attenuates LPS-induced acute lung injury via activation of the ACE2-Ang-(1-7)-Mas axis. Innate immunity 2018; 24(5): 285-296.
Lu W, Kang J, Hu K et al. Angiotensin-(1–7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats. Brazilian journal of medical and biological research 2016; 49(10).
Chopra M, Reuben JS, Sharma AC. Acute lung injury: apoptosis and signaling mechanisms. Experimental biology and medicine 2009; 234(4): 361-371.
Xia X, Cui J, Wang HY et al. NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 2011; 34(6): 843-853.
Chan JF-W, Kok K-H, Zhu Z et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections 2020; 9(1): 221-236.
Celik O, Hascalik S, Elter K, Tagluk M, Gurates B, Aydin N. Combating endometriosis by blocking proteasome and nuclear factor-κB pathways. Human reproduction 2008; 23(11): 2458-2465.
Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-κB: its role in health and disease. Journal of molecular medicine 2004; 82(7): 434-448.
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet 2020; 395(10229): 1033-1034.
Guo S-W. Nuclear factor-κB (NF-κB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecologic and obstetric investigation 2007; 63(2): 71-97.
Adams J, Palombella VJ, Sausville EA et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer research 1999; 59(11): 2615-2622.
Orlowski RZ, Stinchcombe TE, Mitchell BS et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. Journal of Clinical Oncology 2002; 20(22): 4420-4427.
Cengiz Seval G, Beksac M. The safety of bortezomib for the treatment of multiple myeloma. Expert opinion on drug safety 2018; 17(9): 953-962.
Horie S, Harada T, Mitsunari M, Taniguchi F, Iwabe T, Terakawa N. Progesterone and progestational compounds attenuate tumor necrosis factor alpha–induced interleukin-8 production via nuclear factor kappaB inactivation in endometriotic stromal cells. Fertility and sterility 2005; 83(5): 1530-1535.
Mahey R, Kaur SD, Chumber S, Kriplani A, Bhatla N. Splenectomy during pregnancy: treatment of refractory immune thrombocytopenic purpura. Case Reports 2013; 2013: bcr2013201778.
Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nature reviews Cancer 2014; 14(1): 13-25.
Dou Q, Chen H-N, Wang K et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer research 2016; 76(15): 4457-4469.
Kalil AC. Lack of Benefit of High-Dose Vitamin C, Thiamine, and Hydrocortisone Combination for Patients With Sepsis. Jama 2020; 323(5): 419-420.
Gien J, Nuxoll C, Kinsella JP. Inhaled Nitric Oxide in Emergency Medical Transport of the Newborn. NeoReviews 2020; 21(3): e157-e164.
Zhang C, Wu Z, Li J-W, Zhao H, Wang G-Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. International Journal of Antimicrobial Agents 2020: 105954.
Thomas BJ, Porritt RA, Hertzog PJ, Bardin PG, Tate MD. Glucocorticosteroids enhance replication of respiratory viruses: effect of adjuvant interferon. Scientific reports 2014; 4(1): 1-11.
Cortjens B, de Jong R, Bonsing JG, Van Woensel JB, Antonis AF, Bem RA. Local dornase alfa treatment reduces NETs-induced airway obstruction during severe RSV infection. Thorax 2018; 73(6): 578-580.
Eulitz D, Mannherz HG. Inhibition of deoxyribonuclease I by actin is to protect cells from premature cell death. Apoptosis 2007; 12(8): 1511-1521.
Papait A, Vertua E, Magatti M et al. Mesenchymal Stromal Cells from Fetal and Maternal Placenta Possess Key Similarities and Differences: Potential Implications for Their Applications in Regenerative Medicine. Cells 2020; 9(1): 127.
Tsubosaka M, Matsumoto T, Sobajima S, Matsushita T, Iwaguro H, Kuroda R. The influence of adipose-derived stromal vascular fraction cells on the treatment of knee osteoarthritis. BMC musculoskeletal disorders 2020; 21: 1-10.