Issue
Nppc/Npr2/cGMP signaling cascade maintains oocyte developmental capacity
Corresponding Author(s) : Onder Celik
Cellular and Molecular Biology,
Vol. 65 No. 4: Issue 4
Abstract
The follicle must fulfill the following criteria if it is to survive the period between early embryonic life and the luteinizing hormone (LH) peak. It should (i) be surrounded by pregranulosa cells; (ii) complete the first meiotic division and become dormant; and (iii) continue metabolism during the dormant stage. Interaction between the natriuretic peptide precursor type C (Nppc) and its receptor, natriuretic peptide receptor 2 (Npr2), affects female fertility through the production of oocytes with developmental capacity and maintain oocyte meiotic arrest. While Nppc is expressed in mural cells, cumulus cells express Npr2. Nppc/Npr2 system exerts its biological function on developing follicles by increasing the production of intracellular cyclic guanosine monophosphate (cGMP). This pathway not only contributes to the development of ovary and the uterus, but aids the formation of healthy eggs in terms of their morphological and genetic aspects. A defect in this pathway leads to asmall ovarian size, string-like uterine horns, and thin endometrium and myometrium. Disorganized chromosomes, abnormal cumulus expansion and early meiotic resumption occur in animals with defective Nppc/Npr2 signaling. The types and number of oocytes also decrease when there is incompetent Nppc/Npr2 signaling. This paper extends on most recent and relevant experimental evidence regarding Nppc/Npr2/cGMP signaling with regard to its crucial role in maintaining oocyte meiotic arrest and the production of oocytes with developmental capacity. We further discuss whether the agonist or antagonist forms of the members of this exciting pathway can be usedfor triggering final oocyte maturation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 2010; 330:366-9.
- McGee E, Spears N, Minami S, Hsu SY, Chun SY, Billig H, et al. Preantral ovarian follicles in serum-free culture: suppression of apoptosis after activation of the cyclic guanosine 30,50-monophosphate pathway and stimulation of growth and differentiation by follicle-stimulating hormone. Endocrinology 1997; 138:2417-24.
- Kiyosu C, Tsuji T, Yamada K, Kajita S, Kunieda T. NPPC/NPR2 signaling is essential for oocyte meiotic arrest and cumulus oophorus formation during follicular development in the mouse ovary. Reproduction 2012; 144:187-93.
- Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, et al. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 1992; 130:229-39.
- Tsuji T, Kiyosu C, Akiyama K, Kunieda T. CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles. Mol Reprod Dev 2012; 79:795-802.
- Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, et al. Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA 2001; 98:4016-21.
- Jankowski M, Reis AM, Mukaddam-Daher S, Dam TV, Farookhi R, Gutkowska J. C-type natriuretic peptide and the guanylyl cyclase receptors in the rat ovary are modulated by the estrous cycle. Biol Reprod 1997; 56:59-66.
- Stepan H, Leitner E, Bader M, Walther T. Organ-specific mRNA distribution of C-type natriuretic peptide in neonatal a
References
Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 2010; 330:366-9.
McGee E, Spears N, Minami S, Hsu SY, Chun SY, Billig H, et al. Preantral ovarian follicles in serum-free culture: suppression of apoptosis after activation of the cyclic guanosine 30,50-monophosphate pathway and stimulation of growth and differentiation by follicle-stimulating hormone. Endocrinology 1997; 138:2417-24.
Kiyosu C, Tsuji T, Yamada K, Kajita S, Kunieda T. NPPC/NPR2 signaling is essential for oocyte meiotic arrest and cumulus oophorus formation during follicular development in the mouse ovary. Reproduction 2012; 144:187-93.
Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, et al. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 1992; 130:229-39.
Tsuji T, Kiyosu C, Akiyama K, Kunieda T. CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles. Mol Reprod Dev 2012; 79:795-802.
Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, et al. Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA 2001; 98:4016-21.
Jankowski M, Reis AM, Mukaddam-Daher S, Dam TV, Farookhi R, Gutkowska J. C-type natriuretic peptide and the guanylyl cyclase receptors in the rat ovary are modulated by the estrous cycle. Biol Reprod 1997; 56:59-66.
Stepan H, Leitner E, Bader M, Walther T. Organ-specific mRNA distribution of C-type natriuretic peptide in neonatal a