Copyright (c) 2023 Qing Hu, Peng Zhou, Yixuan Yan, Qun Huang
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Evaluation of immune microenvironment in IgG4-related sialadenitis
Corresponding Author(s) : Qun Huang
Cellular and Molecular Biology,
Vol. 69 No. 15: New discoveries in inflammatory factors
Abstract
IgG4-related sialadenitis is a systemic autoimmune disease that can lead to fibro-inflammatory conditions. This study aims to investigate the immune microenvironment and potential signaling pathways associated with IgG4-related sialadenitis. Datasets related to IgG4-related sialadenitis were retrieved from the GEO database. Immune cell infiltration analysis was conducted using the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) method. Differentially immune-related expressed genes (DIEG) and immune-related functional enrichment were identified. Moreover, potential treatment targets for IgG4-related sialadenitis were predicted using The Connectivity Map. Only two datasets from GEO were included for further analysis. The CIBERSORT results indicated dominant immune cell populations in IgG4-related sialadenitis, including CD8+ T cells, resting NK cells, monocytes, and naïve B cells in peripheral blood mononuclear cells. Additionally, high abundance of plasma cells was observed in labial salivary gland tissues. Furthermore, a total of 42 DIEGs were identified, with tumor necrosis factor (TNF) signaling via the NF-Kappa B signaling pathway and the p53 signaling pathway being highly enriched. Autophagy inhibitors and DNA topoisomerase inhibitors were strongly associated with potential targets for the treatment of IgG4-related sialadenitis (P<0.05). This study reveals altered immune microenvironment in peripheral blood mononuclear cells and labial salivary gland tissues in IgG4-related sialadenitis. Autophagy inhibitors and DNA topoisomerase inhibitors show promise as potential targets for treating IgG4-related sialadenitis, providing a novel therapeutic strategy for this disease.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX