Issue
Copyright (c) 2022 Xiaotao Feng, Wei Ren, Yuxiang Tang, Ruyan Wen, Huiming Duan, Li Yan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Palmitic acid impairs INS-1 cells and alters the global gene expression profile
Corresponding Author(s) : Huiming Duan
Cellular and Molecular Biology,
Vol. 68 No. 9: Issue 9
Abstract
Chronic elevated free fatty acids (FFAs) impair pancreatic β cells, but the mechanisms remain elusive. In this study, palmitic acid (PA) impaired viability and glucose-stimulated insulin secretion of INS-1 cells. Microarray analysis showed that PA markedly altered the expression of 277 probe sets of genes with 232 upregulated and 45 downregulated (fold change ≥ 2.0 or ≤ -2.0; P < 0.05). Gene Ontology analysis displayed a series of the biological process of the differentially expressed genes, such as intrinsic apoptotic signaling pathway in response to endoplasmic reticulum (ER) stress and oxidative stress, inflammatory response, positive regulation of macroautophagy, regulation of insulin secretion, cell proliferation and cycle, fatty acid metabolic process, glucose metabolic process and so on. Kyoto Encyclopedia of Genes and Genomes analysis demonstrated molecular pathways with which the differentially expressed genes associated, including NOD-like receptor, NF-κB and PI3K-Akt signaling pathways, apoptosis, adipocytokine signaling pathway, ferroptosis, protein processing in ER, fatty acid biosynthesis and cell cycle. Moreover, PA promoted protein expression of CHOP, cleaved caspase-3, microtubule-associated proteins light chain 3 (LC3)-II, NOD-like receptor pyrin domain containing 3 (NLRP3), cleaved IL-1β and Lcn2, increased reactive oxygen species, apoptosis and the ratio of LC3-II/I, and reduced p62 protein expression, intracellular glutathione peroxidase and catalase levels, suggesting activation of ER stress, oxidative stress, autophagy and NLRP3 inflammasome. The results indicate the impaired role of PA and the global gene expression profile of INS-1 cells following PA intervention, providing new insights into the mechanisms involving the damage of pancreatic β cells by FFAs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX