Issue
Copyright (c) 2022 Abdel Moneim Sulieman, Abdelmalik O. A. Idris, Naimah A. Alanazi1, Nawaf I. Alshammari, Abdullah Alshammary, Soheil Kahrizi, Meshari Al-Azmi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.The Different Ecological, Medical, and Industrial Important Bacteria Harboring the Soil of Hail, Kingdom of Saudi Arabia
Corresponding Author(s) : Abdel Moneim Sulieman
Cellular and Molecular Biology,
Vol. 68 No. 9: Issue 9
Abstract
This study aims at unraveling the bacterial biodiversity of Hail soil to establish a baseline study that contributes to harnessing these bacteria in applications that benefit human beings. We collected two groups of soil samples; one group of the models contained wheat roots, and the second group was free of roots. Bacteria were isolated from these soils, DNA was extracted, 16srRNA from different isolates was amplified and sequenced, and the phylogeny tree was analyzed. The taxonomic relationship indicated that the isolates obtained were belonging to Proteobacteria, Actinobacteria, and Firmicutes. The bacteria affiliated with Proteobacteria’s phylum were Stenotrophomonas, Klebsiella, Azospirillum, Calidifontimicrobium. Firmicutes include Bacillus and Actinobacteria represented by Nocardioides. The genera Bacillus, Stenotrophomonas, Calidifontimicrobium, and Nocardioides were associated with wheat's rhizosphere while the others live free in the soil. The study concluded that Hail soil is a pool of bacteria affiliated to different phyla; they share genetic traits, tolerate harsh environmental conditions that lead them to play different crucial roles in the environment, and may contribute to all aspects of human life harnessed adequately. More studies using housekeeping genes, "omics" approaches, and studies examining these isolates’ ability to withstand extreme environmental conditions are recommended to view more insights about these bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX