Issue
Copyright (c) 2022 Kejing Wang, Lipeng Hou, Zi-ang Sun, Wei Wang
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Antibacterial activity of chrysophsin-3 against oral pathogens and Streptococcus mutans biofilms
Corresponding Author(s) : Wei Wang
Cellular and Molecular Biology,
Vol. 68 No. 9: Issue 9
Abstract
Dental caries and pulpal diseases are common oral bacterial infectious diseases, the prevention and treatment of these diseases require the control of the causative pathogens, such as Streptococcus mutans (S. mutans) and Enterococcus faecalis. As a cationic antimicrobial peptide, Chrysophsin-3 has broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria which may cause a variety of oral infectious diseases. The present study evaluated the potential of chrysophsin-3 against several oral pathogens and S.mutans biofilms. The cytotoxic activity of chrysophsin-3 against human gingival fibroblasts (HGFs) was investigated for potential oral application. We use minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and time-kill assay to evaluate the killing effect of chrysophsin-3. Then scanning electron microscopy (SEM) and Transmission Electron Microscope (TEM) were used to analyze the change of morphology and membrane of the pathogens, Live/Dead staining and confocal scanning laser microscopy (CSLM) was used to observe S. mutans biofilms. The results indicate that chrysophsin-3 has varying antimicrobial activities against different oral bacteria. Chrysophsin-3 did not cause obvious cytotoxicity in HGFs at concentrations of 32-128 μg/ml for 5 min or 8 μg/ml for 60 min. SEM revealed membranous blebs and pore formation on the bacterial cell surface, and TEM showed loss of the nucleoid and dissolution of the cytoplasmic space. Furthermore, the CSLM images indicate that chrysophsin-3 can reduce the viability of the cells within the biofilms significantly and had a comparatively lethal effect against S. mutans biofilms. Taken together, our finding suggests that chrysophsin-3 has potential clinical application in oral infectious disease, especially in preventing and treating dental caries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX