Issue
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.
Trafficking mechanism of bone marrow-derived mesenchymal stem cells toward hepatocellular carcinoma HepG2 cells by modulating Endoglin, CXCR4 and TGF-β
Corresponding Author(s) : A Mardomi
Cellular and Molecular Biology,
Vol. 62 No. 11: Issue 11
Abstract
Mesenchymal stem cells (MSCs) display differential migration ability toward different tumor-released factors. Migration of MSCs is highly important in induction of proliferation and invasiveness of hepatocellular carcinoma (HepG2) cells. In this study, the role of CXCR4/CXCL12 axis and TGF-βR signaling were evaluated in the migration of MSCs toward HepG2 cells. The MSCs were incubated with SDF-1α (CXCL12), antagonists of CXCR4, TGF-βR, and co-receptor of TGF-β, (endoglin) for 48h. Then, the migration of these cells toward HepG2 cells was analyzed using in vitro migration assay. SDF-1α at a concentration of 100nM MSCs revealed the highest migration rate toward the conditioned medium (1.62 fold compared to the migration of un-treated MSCs; p<0.05). Applying combination of the antagonists against CXCR4, TGF- βR, and co-receptor of TGF-β decreased the migration rate significantly (4.51 fold; p<001). Western blot analysis confirmed that RhoA activity is a core modulator in migration pathway. This study demonstrated that CXCR4 and TGF-βR signaling are important for migration of MSCs toward HepG2 cells. Identifying the key mediators in the migration of MSCs toward hepatocellular carcinoma cells and then development of the therapeutic inhibitors against these factors can be considered as an essential strategy in suppression of tumor progression and metastasis.
Keywords
Mesenchymal stem cells
Migration
SDF-1α
TGF-β
CD105
HCC.
Mardomi, A., Sabzichi, M., Hussein Somi, M., Shanehbandi, D., Rahbarghazi, R., Taj Sanjarani, O., & Samadi, N. (2016). Trafficking mechanism of bone marrow-derived mesenchymal stem cells toward hepatocellular carcinoma HepG2 cells by modulating Endoglin, CXCR4 and TGF-β. Cellular and Molecular Biology, 62(11), 81–86. https://doi.org/10.14715/cmb/2016.62.11.14
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX