Issue
Copyright (c) 2024 Ghulam Rasool Khawaja, MUREED Husain, Mostafa Rezk Sharaf, Muhammad Tufail, Koko Dwi Sutanto, Waleed Saleh Alwaneen, Abdulrahman Saad Aldawood
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Mitochondrial DNA sequence-based identification of two subterranean termite species, from Riyadh Province, Kingdom of Saudi Arabia
Corresponding Author(s) : Mureed Husain
Cellular and Molecular Biology,
Vol. 70 No. 9: Issue 9
Abstract
Termites are economically important wood-destroying and agricultural pests. The termite fauna almost consists of 2900 described species in 286 genera worldwide. In the present study, hundreds of termite samples from 42 different locations in the Riyadh province were collected. These samples were previously used for morphometric identification and reported two subterranean termite species, Coptotermes heimi and Psammotermes hypostoma, in the family Rhinotermitidae. In the present study, these samples were analysed using DNA barcoding with the mitochondrial cytochrome c oxidase subunit 1 gene to confirm the conventional taxonomical identification on a molecular basis. The obtained COI gene sequences of all 42 termite specimens were submitted to GenBank (accession numbers: ON529959-ON529969, OP825131-OP825132, and OP890882-OP890910). Eleven of the 42 samples were thus identified as C. heimi and the remaining 31 samples as P. hypostoma, which were phylogenetically analysed. All the 11 C. heimi sequences were grouped in a single clade, indicating close relatedness. While 31 sequences of P. hypostoma constituted two clades in the phylogenetic tree. Pairwise nucleotide sequence identity and divergence analysis showed that C. heimi sequences showed high nucleotide identities of 87.6-99.5% and less divergence ranging from 0.5% to 13.6%. Similarly, sequences of P. hypostoma also showed high nucleotide identity of 78.6-100% and low divergence among them ranging from 0-10.7%. A further application, significance, and shortcomings of COI-based DNA barcoding have been discussed. DNA barcoding using the COI gene is a reliable tool to distinguish C. heimi and P. hypostoma genotypes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX