Copyright (c) 2023 Chunwang Liu, Rui Peng, Zonglong Nie, Li Zhao, Mingxue Zhu, Xiaofeng Mu
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.IL-37 inhibits glycolysis of lung adenocarcinoma by inhibiting the expression of PFKFB3
Corresponding Author(s) : Xiaofeng Mu
Cellular and Molecular Biology,
Vol. 69 No. 15: New discoveries in inflammatory factors
Abstract
Aerobic glycolysis is one of the hallmarks of cancer. The metabolic phenotype of tumor cells is characterized by preferential dependence on glycolysis under aerobic conditions. Recent researchers have provided a piece of information on the effectiveness of targeting glycolysis. Thus, targeted glucose metabolism therapy is still a research hotspot. Interleukin 37 (IL-37) plays an important role in tumor development. Previous studies have found that IL-37 can inhibit the progression of lung adenocarcinoma in a variety of ways. For example, IL-37 can inhibit the migration and invasion of lung adenocarcinoma by inhibiting the interleukin 6(IL-6)/ Signal transducing activator of transcription 3(STAT3) pathway. IL-37 inhibits tumor growth by regulating RNA methylation at the M6A site of lung adenocarcinoma. It has been found that overexpression of IL-37 in macrophages can reverse the Warburg effect. The mechanism of IL-37 on glucose metabolism of tumor cells has not been studied. In research, glucose uptake and lactic acid production were inhibited in A549 cells with recombinant human IL-37(rhIL-37). Also, rhIL-37 inhibited the expression level of PFKFB3 in A549 cells. To verify whether the two aspects of rhIL-37's effects on A549 cells are related, we applied PFK15, a specific inhibitor of PFKFB3, to prove that rhIL-37 inhibits the glucose uptake and lactate production of A549 cells by inhibiting the expression of PFKFB3, and further inhibits the progression of lung adenocarcinoma.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX