Issue
Copyright (c) 2023 Weisi Yuan, Yinxing Chen, Dan Zhuang, Hong Zeng, Xihua Lin, Sigeng Hong, Fang Lin, Xiuna Chen, Shucan Huang, Fen Lin
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.UHPLC-MS/MS-based central carbon metabolism unveils the biomarkers related to colon cancer
Corresponding Author(s) : Fen Lin
Cellular and Molecular Biology,
Vol. 69 No. 9: Issue 9
Abstract
Even though colon cancer ranks among the leading causes of cancer mortality, early detection dramatically increases survival rates. Many studies have been conducted to determine whether altered metabolite levels may serve as a potential biomarker of cancer that affects key metabolic pathways. The goal of the study was to detect metabolic biomarkers in patients with colon cancer using liquid chromatography-mass spectrometry (LC-MS). This study consisted of 30 patients with colon cancer. An analysis of the metabolomes of cancer samples and para-carcinoma tissues was conducted. We identified a series of important metabolic changes in colon cancer by analyzing metabolites in cancerous tissues compared to their normal counterparts. They are mainly involved in the pentose phosphate pathway, the TCA cycle, glycolysis, galactose metabolism, and butanoate metabolism. As well, we observed dysregulation of AMP, dTMP, fructose, and D-glucose in colon cancer. Additionally, the AUCs for AMP, dTMP, fructose, and D-glucose were greater than 0.7 for the diagnosis of colon cancer. In conclusion, AMP, dTMP, fructose, and D-glucose showed excellent diagnostic performance and could serve as novel disease biomarkers for colon cancer diagnosis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX