Issue
Copyright (c) 2023 Hasibe Verdi, Hatice Pinar Baysan Cebi, Yaprak Yilmaz Yalcin, Tulin Ozkan, Mehtap Akcil Ok, Asuman Sunguroglu, Fatma Belgin Atac
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.The Role of Parkin in Rat Pancreatic Beta Cells Fate
Corresponding Author(s) : Hasibe Verdi
Cellular and Molecular Biology,
Vol. 69 No. 8: Issue 8
Abstract
Parkin is a member of the mitochondrial quality control system that plays a major role in mitophagy. Although the loss of function mutations in the Parkin gene has been associated with the Familial Parkinson's phenotype, research in recent years points out that Parkin’s function is not limited to neurodegenerative diseases. Parkin's function impressing key cellular quality control mechanisms, including the ubiquitin-proteasome and autophagy-lysosome systems, makes it an important player in the maintenance of cellular homeostasis. In this study, we investigated whether Parkin affects cell viability and ER stress responses under lipotoxic conditions in INS-1E cells. Our results may suggest that silencing Parkin may affect autophagy in addition to apoptosis. We also showed that Parkin may have a protective effect against lipo-toxic effects in INS-1E cells. Consistent with previous studies, we observed that stress responses were different for high and low palmitic acid doses. The Parkin being inhibited under high-dose PA treatment and active under low-dose PA treatment indicate that regulation of stress responses is controlled by environmental conditions. Our preliminary findings may suggest that in low lipotoxic conditions, Parkin affects the ER stress response by modulating Chop activity and Ca2+ release from the ER to the cytoplasm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX