Issue
Copyright (c) 2022 Xiaolu Chen, Jiaou Huang, Yangying Peng, Yu Han, Xiaoyan Wang, Chuanfa Tu
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.The role of circRNA polyribonucleotide nucleoside transferase 1 on Gestational Diabetes Mellitus
Corresponding Author(s) : Xiaolu Chen
Cellular and Molecular Biology,
Vol. 68 No. 6: Issue 6
Abstract
This study aimed to focus on the mechanism of circRNA polyribonucleotide nucleoside transferase 1 (circ-PNPT1)-mediated miR-889-3p/PAK1 on gestational diabetes mellitus (GDM). Placental tissues from normal pregnancy and GDM patients were collected to detect the levels of circ-PNPT1, miR-889-3p, and PAK1. The high glucose-induced human trophoblast cells HTR-8/SVneo were adopted to stimulate the GDM model in vitro (HG group) and were transfected with lentivirus to silence circ-PNPT1 (si-circ-PNPT1 group) and mimic to overexpress miR-889-3p (miR-889-3p group). Cell proliferation, apoptosis, migration, and invasion were detected by CKK-8, flow cytometry, Transwell, and scratch assay, respectively. The results showed that the expressions of circ-PNPT1 and PAK1 in the GDM patients were up-regulated, and miR-889-3p was down-regulated (P< 0.05). Compared with cells in the control group, the circ-PNPT1 and PAK1 in the HG group were up-regulated, and miR-889-3p was down-regulated (P< 0.05). The cell proliferation, migration, and invasion abilities were weakened, and the apoptosis rate increased (P< 0.05). E-cadherin protein was elevated, and the N-cadherin and Vimentin decreased (P< 0.05). Compared with the HG group, the expressions of circ-PNPT1 and PAK1 in the other two groups decreased, and miR-889-3p increased (P< 0.05). The cell proliferation, migration, and invasion were enhanced, and the apoptosis rate decreased (P< 0.05). E-cadherin, N-cadherin, and Vimentin decreased (P< 0.05). There were targeted binding sites for miR-889-3p with circ-PNPT1 and PAK1, indicating circ-PNPT1 promoted HG-induced trophoblast dysfunction through the miR-889-3p/PAK1 axis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX