A recombinant chimeric protein of protective antigen and lethal factor from Bacillus anthracis in polymeric nanocapsules showed a strong immune response in mice: a potential high efficacy vaccine against anthrax
Corresponding Author(s) : Zahra Aziziaram
Cellular and Molecular Biology,
Vol. 68 No. 3: New findings of cellular, molecular, and medical biology using nanotechnology
Abstract
Anthrax is a serious infectious disease caused by Bacillus anthracis, rod-shaped gram-positive bacteria. The disease infects both humans and animals and causes severe illness. Many vaccines have been developed for anthrax, but the vaccine with very high efficacy is yet to be developed. To overcome the problems of efficacy posed by the existing vaccines, a recombinant chimeric fusion protein containing domain 1 of lethal factor (LFD1) and domain 4 of Bacillus anthracis protective antigen (PA4) was used as antigen in copolymeric nanocapsules (NCs). Accordingly, the solvent evaporation double emulsion method was used to produce NCs containing recombinant chimeric fusion protein (LFD1-PA4). Zeta sizer and potential of nanoparticles, nanoparticle loading efficiency, release pattern of recombinant protein, and the possible effect of polylactic acid-polyethylene glycol (PLA-PEG) nanoparticle production method were investigated. Mice were used to test and evaluate the immune response. The mean titer of antibody produced against loaded LFD1-PA4 compared to free form showed a significant difference. The difference in antibody titer between the groups of once injected, twice injected, and free antigen was significant, and the highest antibody titer was found in the mice twice injected. In addition, a single-time loaded injection showed significantly higher antibodies than the free form injection indicating that loaded LFD1-PA4 into PLA-PEG nanoparticles elicits a stronger immune response. This study showed that LFD1-PA4 fusion protein from Bacillus anthracis served as an active antigen in mice. Also, the nanocarrier (PLA-PEG) containing the antigen can stimulate the immune system in the mice, owing to their controlled release property.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX