Issue
Potential of Laurencia obtusa as a substrate for the development of a probiotic Saccharomyces cerevisiae
Corresponding Author(s) : F. Caf
Cellular and Molecular Biology,
Vol. 63 No. 8: Issue 8
Abstract
Laurencia obtusa (Ceramiales, Rhodophyta) has tremendous nutritional value, being high in proteins, oligosaccharides, vitamins, essential minerals, and fatty acids, and it is a rich source of amino acids and trace elements. In this study, L. obtusa was extracted and subjected to phenolic, sugar and flavonoid analyses.The fatty acid, vitamin and phytosterol contents in Saccharomyces cerevisiae were evaluated when it was incubated with L. obtusa dry biomass. The fatty acids in the lipid extract were analysed after converting them into methyl esters using gas chromatography, and vitamin concentrations were measured using high-performance liquid chromatography (HPLC). According to the achieved results, the total fatty acid levels and vitamin contents of the S. cerevisiae prepared with algal extract increased at different rates. Our results showed that α-tocopherol decreased in the group in which the S. cerevisiae was added the algal extract. When compared to the control group, ergesterol increased in the group in which L. obtusa extract was added. Additionally, when compared to the control group in which L. obtusa extract was added, stearic acid (18:0), oleic acid (18:1) and linoleic acid (18:2) increased in the other groups. Palmitoleic acid (16:1) increased in the L. obtusa culture medium, but palmitic acid decreased in the L. obtusa culture medium. In conclusion, it was determined that the L. obtusa extract added to the development medium of S. cerevisiae caused differences in the synthesis of some vitamins and fatty acids.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- References
- Raposo M.J, Bernardo de Morais AMM, de Morais RMSC. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar drug 2016; 14:1-27.
- Fujii T, Kuda T, Saheki K, Okuzumi M. Fermentation ofwater-soluble polysaccharides of brown algae by human intestinalbacteria in vitro. Nippon Suisan Gakk 1992; 58:149–152.
- Goni I, Guidel-urbano M, Bravo L, Saura-calixto F. Dietary modulation of bacterial fermentative capacity by edible seaweeds in rats. J. Agric. Food Chem 2001; 49: 2663-2668.
- Kuda T, Yokoyama M, Fujii T. Effects of marine algae diets Hijiki, Aonori, and Nori on levels of serum lipid and cecal microflora in rats. Fisheries Science 1997; 63:428–432.
- Kuda T, Goto H, Yokoyama M, Fujii T. Fermentable dietary ï¬ber in dried products of brown algae and their effects on cecal microflora and levels of plasma lipid in rats. Fisheries Sci 1998; 64:582–588.
- Dawczynski C, Schubert R, Jahreis G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 2007; 103: 891–899.
- Fayaz M, Namitha KK, Murthy KN, Swamy MM, Sarada R, Khanam S, Subbarao PV, Ravishankar GA. Chemical composition, Iron bioavailability and antioxidant activity of Kappsphycus alvarezi (Doty). J Agric Food Chem 2005; 53:792-797.
- Kraan S. Algal polysaccharides, novel applications and outlook. In Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology; InTech: Rijeka, Croatia, 2012; 489–524.
- Swain MR, Singdevsachan SK, Patra JK. Biochemical composition and antioxidant potential of fermented tropical fruits juices. Agro Food Ind Hi Tech 2016; 27(4):4-9.
- Saura-Calixto F, Goni I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 2006; 94:442-447.
- Souto ML, Manriquez CP, Norte M, Fernandez JJ. Novel marine polyethers. Tetrahedron 2002; 58:8119-8125.
- Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2007; 24:31-86.
- Ji NY, Li XM, Ding LP, Wang BG. Two new aristolane sesquiterpenes from Laurencia similis. Chin Chem Lett 2007; 18:178-180.
- Hara A, Radin NS. Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 1978; 90(1):420–426.
- Katsanidis E, Addis PB. Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radic Biol Med 1999; 27(11-12): 1137–40.
- Ozsahin AD, Yilmaz O. Prunus armeniaca L. cv. Hacihaliloglu Fruits Extracts Prevent Lipid Peroxidation and Protect the Unsaturated Fatty Acids in the Fenton Reagent Environment. Asıan J Chem 2010; 22: 8022–8032.
- Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteau reagent. Meth Enzymol 1999; 299:152–178.
- Zu YG, Li CY, Fu, YJ, Zha CJ. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J Pharm Biomed Anal 2006; 41:714-719.
- Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med 1999; 26:1231–1237.
- Kumari P, Kumar M, Reddy CRK, Jha B. Algal lipids, fatty acids and sterols: In Functional Ingredients from Algae for Foods and Nutraceuticals; (Eds), Domínguez, H. Cambridge, UK, 2013, pp 87–134.
- Pereira H, Barreira, L, Figueiredo, F, Custo´dio L, Vizetto-Duarte C, Polo C, Resˇek E, Engelen A, Varela J. Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 2012; 10:1920–1935.
- FAO Fisheries and Aquaculture Department. The state of world fisheries and aquaculture 2010. Rome: Food and Agriculture Organization of the United Nations; pp 197.
- Vizetto-Duarte C, Pereira H, Bruno de Sousa CB, Pilar Rauter AP, Albericio F, Custódio L, Barreira L, Varela J. Fatty acid profile of different species of algae of the Cystoseira genus: a nutraceutical perspective. Nat Prod Res 2015; 29:1264-1270.
- van Ginneken VJ, Helsper JP, de Visser W, van Keulen, Brandenburg WA. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas. Lipids Health Dis 2011; 10:104.
- Aslan A, Can Mć°, Boydak D. Anti-Oxidant Effects of Pomegranate Juice on Saccharomyces cerevisiae cell growth. Afr J Tradıt Complem 2014; 11(4):14-18.
- Erecevit P, Kirbag S, Yilmaz O. Determination Of Phytochemical Characteristics Of The Extract Of Zea mays with Saccharomyces boulardii. Chem. Nat Compd 2013; 49(1):12-16 (2013).
- Gurvitz A, Hamilton B, Ruis H, Hartig A, Hiltunen JK. Degration of conjugated linoleic acid isomers in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2001; 1533(2):81– 85.
- Rodrigues D, Rocha-Santos TAP, Gomes AM, Goodfellow BJ, Freitas AC. Lipolysis in probiotic and symbiotic cheese: the influence of probiotic bacteria, prebiotic compounds and ripening time on free fatty acid profiles. Food Chem 2012; 131:1414–1421.
- Jensen A. Component sugars of some common brown algae, Norwegian Institute of Seaweed Research, Akademisk Trykningssentral, Blindern, Oslo. Report 1956; 9:1-8.
- Masari, F, Cedeno FRP, Chavez EGS, Ezequiel de Oliveira L, Gelli VC, Monti R. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol Biofuels 2016; 9:122.
- Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 1999; 47:3954-3962.
- Qian JY, Mayer D, Kuhn M. Flavonoids in fine buckwheat (Fagopyrum esculentum Monch) flour and their free radical scavenging activities. Deut Lebensm-Rundsch 1999; 95:343-349.
- Yoshie Y, Wang W, Hsieh Y, Suzuki T. Compositional Difference of Phenolic Compounds between Two Seaweeds, Halimeda spp. J Tokyo Univ Fish 2002; 88:21-24.
- Yoshıe-Stark Y, Hsıeh Y, Suzukı T. Distribution of flavonoids and related compounds from seaweed in japan Halimeda spp. J Tokyo Univ Fish 2003; 89:1-6.
- Al-Saif SSA, Abdel-Raouf N, El-Wazanani HA, Aref IA. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J Biol Sci 2014; 21:57–64.
- Matanjun P, Mohamed S, Mustapha N, Muhammad K, Ming C. Antioxidant activities and phenolics content of eight species of Seaweeds from North Borneo. J Appl Phycol 2008; 20:367-373.
- Morel L, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brisot P, Cillard P, Cillard J. Anti-oxidant and iron-chelating activities of the flavonoids catechins, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 1993; 45:13-19.
- Johnson M, Babu A, Janakiraman N, Renisheya J, Jeba-Malar T. Phytochemical Studies On Laurencia Obtusa (Hudson) Lamourux. Int J of Biomed & Adv Res2012; 03:225-232.
- Jiangning G, Xinchu W, Hou W, Qinghua L, Kaishun B. Antioxidants from a Chinese medicinal herb – Psoralea corylifolia L. 2005; Food Chem 91(2):287-92.
- Suja KP, Jayalekshmy A, Arumughan C. Antioxidant activity of sesame cake extract. Food Chem 2005; 91(2): 213-219.
- Sokmen A, Sokmen M, Daferera D, Polissiou M, Candan F, Unlu M, Akpulat HA. The in vitro antioxidant and antimicrobial activities of the essential oil and methanol extracts of Achillea biebersteini Afan. (Asteraceae). Phytother Res 2004; 18(6):451-456.
- Demirel Z, Yilmaz-Koz FF, Karabay-Yavasoglu, NU, Ozdemir G, Sukatar A. Antimicrobial and antioxidant activities of solvent extracts and the essential oil composition of Laurencia obtusa and Laurencia obtusa var. Pyramidata. Rom Biotech Lett 2011; 16(1): 5927- 5936.
- Duan XJ, Zhang WW, Li XM, Wang BG. Evaluation of antioxidant property of extract and fractions obtained from red alga, Polysiphonie urcelata. Food Chem 2006; 95, 37-43.
- Wang, B.G., Zhang, W.W., Duan, X.J., Li, X.M. "In vitro antioxidative activities of extract and semi-purified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae). Food Chem 2009; 113: 1101-1105.
- Nagai T, Yukimoto T. Preparation and functional properties of beverages made from sea algae. Food Chem 2003; 81: 327-332.
- Guvenc M, Yılmaz O, Ozsahın AD, Aslan A, Tuzcu M, Kıreccı OA. The Growth of Saccharomyces Cerevisiae in the Different Containing Grape Juices Environment Affects Fatty Acid Biosynthesis and Activities of Responsible Enzymes. TJST 2010; 5(1):43-51.
- Ozsahin AD, Guvenc M, Yilmaz O, Aslan A, Tuzcu M. The effects of different sugar sources on fatty acid biosynthesis in the Saccharomyces cerevisiae cell culture. Journal of Animal and Veterinary Advances 2009; 8(3):424– 429.
- Rolım PM. Development of prebiotic food products and health benefts. Food Sci Technol 2015; 35(1): 3-10.
- Hao L, Lu X, Sun M, Li K, Shen L, Wu T. Protective effects of L-arabinose in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Food Nutr Res 2015; 59:10.3402/fnr.v59.28886.
References
References
Raposo M.J, Bernardo de Morais AMM, de Morais RMSC. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar drug 2016; 14:1-27.
Fujii T, Kuda T, Saheki K, Okuzumi M. Fermentation ofwater-soluble polysaccharides of brown algae by human intestinalbacteria in vitro. Nippon Suisan Gakk 1992; 58:149–152.
Goni I, Guidel-urbano M, Bravo L, Saura-calixto F. Dietary modulation of bacterial fermentative capacity by edible seaweeds in rats. J. Agric. Food Chem 2001; 49: 2663-2668.
Kuda T, Yokoyama M, Fujii T. Effects of marine algae diets Hijiki, Aonori, and Nori on levels of serum lipid and cecal microflora in rats. Fisheries Science 1997; 63:428–432.
Kuda T, Goto H, Yokoyama M, Fujii T. Fermentable dietary ï¬ber in dried products of brown algae and their effects on cecal microflora and levels of plasma lipid in rats. Fisheries Sci 1998; 64:582–588.
Dawczynski C, Schubert R, Jahreis G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 2007; 103: 891–899.
Fayaz M, Namitha KK, Murthy KN, Swamy MM, Sarada R, Khanam S, Subbarao PV, Ravishankar GA. Chemical composition, Iron bioavailability and antioxidant activity of Kappsphycus alvarezi (Doty). J Agric Food Chem 2005; 53:792-797.
Kraan S. Algal polysaccharides, novel applications and outlook. In Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology; InTech: Rijeka, Croatia, 2012; 489–524.
Swain MR, Singdevsachan SK, Patra JK. Biochemical composition and antioxidant potential of fermented tropical fruits juices. Agro Food Ind Hi Tech 2016; 27(4):4-9.
Saura-Calixto F, Goni I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 2006; 94:442-447.
Souto ML, Manriquez CP, Norte M, Fernandez JJ. Novel marine polyethers. Tetrahedron 2002; 58:8119-8125.
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2007; 24:31-86.
Ji NY, Li XM, Ding LP, Wang BG. Two new aristolane sesquiterpenes from Laurencia similis. Chin Chem Lett 2007; 18:178-180.
Hara A, Radin NS. Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 1978; 90(1):420–426.
Katsanidis E, Addis PB. Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radic Biol Med 1999; 27(11-12): 1137–40.
Ozsahin AD, Yilmaz O. Prunus armeniaca L. cv. Hacihaliloglu Fruits Extracts Prevent Lipid Peroxidation and Protect the Unsaturated Fatty Acids in the Fenton Reagent Environment. Asıan J Chem 2010; 22: 8022–8032.
Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteau reagent. Meth Enzymol 1999; 299:152–178.
Zu YG, Li CY, Fu, YJ, Zha CJ. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J Pharm Biomed Anal 2006; 41:714-719.
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med 1999; 26:1231–1237.
Kumari P, Kumar M, Reddy CRK, Jha B. Algal lipids, fatty acids and sterols: In Functional Ingredients from Algae for Foods and Nutraceuticals; (Eds), Domínguez, H. Cambridge, UK, 2013, pp 87–134.
Pereira H, Barreira, L, Figueiredo, F, Custo´dio L, Vizetto-Duarte C, Polo C, Resˇek E, Engelen A, Varela J. Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 2012; 10:1920–1935.
FAO Fisheries and Aquaculture Department. The state of world fisheries and aquaculture 2010. Rome: Food and Agriculture Organization of the United Nations; pp 197.
Vizetto-Duarte C, Pereira H, Bruno de Sousa CB, Pilar Rauter AP, Albericio F, Custódio L, Barreira L, Varela J. Fatty acid profile of different species of algae of the Cystoseira genus: a nutraceutical perspective. Nat Prod Res 2015; 29:1264-1270.
van Ginneken VJ, Helsper JP, de Visser W, van Keulen, Brandenburg WA. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas. Lipids Health Dis 2011; 10:104.
Aslan A, Can Mć°, Boydak D. Anti-Oxidant Effects of Pomegranate Juice on Saccharomyces cerevisiae cell growth. Afr J Tradıt Complem 2014; 11(4):14-18.
Erecevit P, Kirbag S, Yilmaz O. Determination Of Phytochemical Characteristics Of The Extract Of Zea mays with Saccharomyces boulardii. Chem. Nat Compd 2013; 49(1):12-16 (2013).
Gurvitz A, Hamilton B, Ruis H, Hartig A, Hiltunen JK. Degration of conjugated linoleic acid isomers in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2001; 1533(2):81– 85.
Rodrigues D, Rocha-Santos TAP, Gomes AM, Goodfellow BJ, Freitas AC. Lipolysis in probiotic and symbiotic cheese: the influence of probiotic bacteria, prebiotic compounds and ripening time on free fatty acid profiles. Food Chem 2012; 131:1414–1421.
Jensen A. Component sugars of some common brown algae, Norwegian Institute of Seaweed Research, Akademisk Trykningssentral, Blindern, Oslo. Report 1956; 9:1-8.
Masari, F, Cedeno FRP, Chavez EGS, Ezequiel de Oliveira L, Gelli VC, Monti R. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol Biofuels 2016; 9:122.
Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 1999; 47:3954-3962.
Qian JY, Mayer D, Kuhn M. Flavonoids in fine buckwheat (Fagopyrum esculentum Monch) flour and their free radical scavenging activities. Deut Lebensm-Rundsch 1999; 95:343-349.
Yoshie Y, Wang W, Hsieh Y, Suzuki T. Compositional Difference of Phenolic Compounds between Two Seaweeds, Halimeda spp. J Tokyo Univ Fish 2002; 88:21-24.
Yoshıe-Stark Y, Hsıeh Y, Suzukı T. Distribution of flavonoids and related compounds from seaweed in japan Halimeda spp. J Tokyo Univ Fish 2003; 89:1-6.
Al-Saif SSA, Abdel-Raouf N, El-Wazanani HA, Aref IA. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J Biol Sci 2014; 21:57–64.
Matanjun P, Mohamed S, Mustapha N, Muhammad K, Ming C. Antioxidant activities and phenolics content of eight species of Seaweeds from North Borneo. J Appl Phycol 2008; 20:367-373.
Morel L, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brisot P, Cillard P, Cillard J. Anti-oxidant and iron-chelating activities of the flavonoids catechins, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 1993; 45:13-19.
Johnson M, Babu A, Janakiraman N, Renisheya J, Jeba-Malar T. Phytochemical Studies On Laurencia Obtusa (Hudson) Lamourux. Int J of Biomed & Adv Res2012; 03:225-232.
Jiangning G, Xinchu W, Hou W, Qinghua L, Kaishun B. Antioxidants from a Chinese medicinal herb – Psoralea corylifolia L. 2005; Food Chem 91(2):287-92.
Suja KP, Jayalekshmy A, Arumughan C. Antioxidant activity of sesame cake extract. Food Chem 2005; 91(2): 213-219.
Sokmen A, Sokmen M, Daferera D, Polissiou M, Candan F, Unlu M, Akpulat HA. The in vitro antioxidant and antimicrobial activities of the essential oil and methanol extracts of Achillea biebersteini Afan. (Asteraceae). Phytother Res 2004; 18(6):451-456.
Demirel Z, Yilmaz-Koz FF, Karabay-Yavasoglu, NU, Ozdemir G, Sukatar A. Antimicrobial and antioxidant activities of solvent extracts and the essential oil composition of Laurencia obtusa and Laurencia obtusa var. Pyramidata. Rom Biotech Lett 2011; 16(1): 5927- 5936.
Duan XJ, Zhang WW, Li XM, Wang BG. Evaluation of antioxidant property of extract and fractions obtained from red alga, Polysiphonie urcelata. Food Chem 2006; 95, 37-43.
Wang, B.G., Zhang, W.W., Duan, X.J., Li, X.M. "In vitro antioxidative activities of extract and semi-purified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae). Food Chem 2009; 113: 1101-1105.
Nagai T, Yukimoto T. Preparation and functional properties of beverages made from sea algae. Food Chem 2003; 81: 327-332.
Guvenc M, Yılmaz O, Ozsahın AD, Aslan A, Tuzcu M, Kıreccı OA. The Growth of Saccharomyces Cerevisiae in the Different Containing Grape Juices Environment Affects Fatty Acid Biosynthesis and Activities of Responsible Enzymes. TJST 2010; 5(1):43-51.
Ozsahin AD, Guvenc M, Yilmaz O, Aslan A, Tuzcu M. The effects of different sugar sources on fatty acid biosynthesis in the Saccharomyces cerevisiae cell culture. Journal of Animal and Veterinary Advances 2009; 8(3):424– 429.
Rolım PM. Development of prebiotic food products and health benefts. Food Sci Technol 2015; 35(1): 3-10.
Hao L, Lu X, Sun M, Li K, Shen L, Wu T. Protective effects of L-arabinose in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Food Nutr Res 2015; 59:10.3402/fnr.v59.28886.