Issue
Cytotoxicity study of benzo[a]pyrene on blood cells of Wistar rat in vitro
Corresponding Author(s) : J. Zhang
Cellular and Molecular Biology,
Vol. 62 No. 14: Issue 14
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Harris, C. C., Vahakangas, K., Newman, M. J., Trivers, G. E., Shamsuddin, A., & Sinopoli, N., et al. (1985). Detection of benzo[a]pyrene diol epoxide-dna adducts in peripheral blood lymphocytes and antibodies to the adducts in serum from coke oven workers. Proc. Natl. Acad. Sci. U.S.A. 19(19), 6672-6676.
- Ross, J., Nelson, G., Erexson, G., Kligerman, A., Earley, K., & Gupta, R. C., et al. (1991). Dna adducts in rat lung, liver and peripheral blood lymphocytes produced by i.p. administration of benzo[a]pyrene metabolites and derivatives. Carcinogenesis, 12(10), 1953-5.
- Grova, N., Salquèbre, G., Hardy, E. M., Schroeder, H., & Appenzeller, B. M. (2014). Tetrahydroxylated-benzo[a]pyrene isomer analysis after hydrolysis of dna-adducts isolated from rat and human white blood cells. Toxicology Letters, 229(3), 183-191.
- Jones, M. D., Rodgers-Vieira, E. A., Hu, J., & Aitken, M. D. (2014). Association of growth substrates and bacterial genera with benzo[a]pyrene mineralization in contaminated soil. Environmental Engineering Science, 31(12), 689-697.
- Turja, R., Guimarí£es, L., Nevala, A., Kankaanpää, H., Korpinen, S., & Lehtonen, K. K. (2014). Cumulative effects of exposure to cyanobacteria bloom extracts and benzo[a]pyrene on antioxidant defence biomarkers in gammarus oceanicus, (crustacea: amphipoda). Toxicon, 78(3), 68-77.
- Beal, M. A., Gagné, R., Williams, A., Marchetti, F., & Yauk, C. L. (2015). Characterizing benzo[a]pyrene-induced lacz mutation spectrum in transgenic mice using next-generation sequencing. BMC Genomics, 16(1), 1-13.
- Kranz, J., Hessel, S., Aretz, J., Seidel, A., Petzinger, E., & Geyer, J., et al. (2014). The role of the efflux carriers abcg2 and abcc2 for the hepatobiliary elimination of benzo[a]pyrene and its metabolites in mice. Chemico-Biological Interactions, 224(224), 36-41.
- Lee, S. K., & Lee, B. M. (1997). Oxidation of erythrocyte protein and lipid, and hemolysis in rabbit red blood cells treated with benzo[a]pyrene or adriamycin. Journal of Toxicology & Environmental Health, 51(6), 557-69.
- Kiruthiga, P. V., Karutha, P. S., & Pandima, D. K. (2014). Silymarin prevents the toxicity induced by benzo(a)pyrene in human erythrocytes by preserving its membrane integrity: an in vitro study. Environmental Toxicology, 29(2), 165-75.
- Vijayapadma, V., Ramyaa, P., Pavithra, D., & Krishnasamy, R. (2014). Protective effect of lutein against benzo(a)pyrene-induced oxidative stress in human erythrocytes. Toxicology & Industrial Health, 30(3), 284-93.
- Zhao, L., Zhang, S., An, X., Tan, W., Pang, D., & Ouyang, H. (2015). Toxicological effects of benzo[a]pyrene on dna methylation of whole genome in icr mice. Cellular & Molecular Biology, 61(5), 115-119.
- Santacroce, M. P., Pastore, A. S., Tinelli, A., Colamonaco, M., & Crescenzo, G. (2015). Implications for chronic toxicity of benzo[a]pyrene in sea bream cultured hepatocytes: cytotoxicity, inflammation, and cancerogenesis. Environmental Toxicology, 30(9), 1045–1062.
- Crowell, S. R., Hansondrury, S., Williams, D. E., & Corley, R. A. (2014). In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes. Toxicology Letters, 228(1), 48–55.
- Bo, J., Gopalakrishnan, S., Chen, F. Y., & Wang, K. J. (2014). Benzo[a]pyrene modulates the biotransformation, dna damage and cortisol level of red sea bream challenged with lipopolysaccharide. Marine Pollution Bulletin, 85(2), 463-70.
- Tung, E. W., Philbrook, N. A., Belanger, C. L., Ansari, S., & Winn, L. M. (2014). Benzo[a]pyrene increases dna double strand break repair in vitro and in vivo: a possible mechanism for benzo[a]pyrene-induced toxicity. Mutation Research/fundamental & Molecular Mechanisms of Mutagenesis, 760(3), 64-69.
- Collin, A., Hardonnière, K., Chevanne, M., Vuillemin, J., Podechard, N., & Burel, A., et al. (2014). Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is responsible for enhanced oxidative stress and cell death in primary rat hepatocytes. Free Radical Biology & Medicine, 72C, 11-22.
References
Harris, C. C., Vahakangas, K., Newman, M. J., Trivers, G. E., Shamsuddin, A., & Sinopoli, N., et al. (1985). Detection of benzo[a]pyrene diol epoxide-dna adducts in peripheral blood lymphocytes and antibodies to the adducts in serum from coke oven workers. Proc. Natl. Acad. Sci. U.S.A. 19(19), 6672-6676.
Ross, J., Nelson, G., Erexson, G., Kligerman, A., Earley, K., & Gupta, R. C., et al. (1991). Dna adducts in rat lung, liver and peripheral blood lymphocytes produced by i.p. administration of benzo[a]pyrene metabolites and derivatives. Carcinogenesis, 12(10), 1953-5.
Grova, N., Salquèbre, G., Hardy, E. M., Schroeder, H., & Appenzeller, B. M. (2014). Tetrahydroxylated-benzo[a]pyrene isomer analysis after hydrolysis of dna-adducts isolated from rat and human white blood cells. Toxicology Letters, 229(3), 183-191.
Jones, M. D., Rodgers-Vieira, E. A., Hu, J., & Aitken, M. D. (2014). Association of growth substrates and bacterial genera with benzo[a]pyrene mineralization in contaminated soil. Environmental Engineering Science, 31(12), 689-697.
Turja, R., Guimarí£es, L., Nevala, A., Kankaanpää, H., Korpinen, S., & Lehtonen, K. K. (2014). Cumulative effects of exposure to cyanobacteria bloom extracts and benzo[a]pyrene on antioxidant defence biomarkers in gammarus oceanicus, (crustacea: amphipoda). Toxicon, 78(3), 68-77.
Beal, M. A., Gagné, R., Williams, A., Marchetti, F., & Yauk, C. L. (2015). Characterizing benzo[a]pyrene-induced lacz mutation spectrum in transgenic mice using next-generation sequencing. BMC Genomics, 16(1), 1-13.
Kranz, J., Hessel, S., Aretz, J., Seidel, A., Petzinger, E., & Geyer, J., et al. (2014). The role of the efflux carriers abcg2 and abcc2 for the hepatobiliary elimination of benzo[a]pyrene and its metabolites in mice. Chemico-Biological Interactions, 224(224), 36-41.
Lee, S. K., & Lee, B. M. (1997). Oxidation of erythrocyte protein and lipid, and hemolysis in rabbit red blood cells treated with benzo[a]pyrene or adriamycin. Journal of Toxicology & Environmental Health, 51(6), 557-69.
Kiruthiga, P. V., Karutha, P. S., & Pandima, D. K. (2014). Silymarin prevents the toxicity induced by benzo(a)pyrene in human erythrocytes by preserving its membrane integrity: an in vitro study. Environmental Toxicology, 29(2), 165-75.
Vijayapadma, V., Ramyaa, P., Pavithra, D., & Krishnasamy, R. (2014). Protective effect of lutein against benzo(a)pyrene-induced oxidative stress in human erythrocytes. Toxicology & Industrial Health, 30(3), 284-93.
Zhao, L., Zhang, S., An, X., Tan, W., Pang, D., & Ouyang, H. (2015). Toxicological effects of benzo[a]pyrene on dna methylation of whole genome in icr mice. Cellular & Molecular Biology, 61(5), 115-119.
Santacroce, M. P., Pastore, A. S., Tinelli, A., Colamonaco, M., & Crescenzo, G. (2015). Implications for chronic toxicity of benzo[a]pyrene in sea bream cultured hepatocytes: cytotoxicity, inflammation, and cancerogenesis. Environmental Toxicology, 30(9), 1045–1062.
Crowell, S. R., Hansondrury, S., Williams, D. E., & Corley, R. A. (2014). In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes. Toxicology Letters, 228(1), 48–55.
Bo, J., Gopalakrishnan, S., Chen, F. Y., & Wang, K. J. (2014). Benzo[a]pyrene modulates the biotransformation, dna damage and cortisol level of red sea bream challenged with lipopolysaccharide. Marine Pollution Bulletin, 85(2), 463-70.
Tung, E. W., Philbrook, N. A., Belanger, C. L., Ansari, S., & Winn, L. M. (2014). Benzo[a]pyrene increases dna double strand break repair in vitro and in vivo: a possible mechanism for benzo[a]pyrene-induced toxicity. Mutation Research/fundamental & Molecular Mechanisms of Mutagenesis, 760(3), 64-69.
Collin, A., Hardonnière, K., Chevanne, M., Vuillemin, J., Podechard, N., & Burel, A., et al. (2014). Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is responsible for enhanced oxidative stress and cell death in primary rat hepatocytes. Free Radical Biology & Medicine, 72C, 11-22.