Issue
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.
ROS production by endogenously generated protoporphyrin ix in murine leukemia cells
Corresponding Author(s) : B Diez
Cellular and Molecular Biology,
Vol. 55 No. 2: Porphyrias and associated pathologies. Biochemistry and molecular biology Part 2
Abstract
Endogenous production of Protoporphyrin IX (PpIX) is successfully exploited for photodynamic therapy (PDT) on malignant cells, following 5-aminolevulinic acid (ALA) administration and light irradiation. This treatment kills cancer cells by damaging organelles and impairing metabolic pathways via cellular reactive oxygen species (ROS) generation. We studied the efficiency of PpIX synthetized from ALA on ROS generation, in the Vincristine resistant (LBR-V160), Doxorubicin resistant (LBR-D160) and sensitive (LBR-) murine leukemia cell lines. Cells were incubated 4 hr with 1 mM ALA and then irradiated during different times with fluorescent light. One hour later, production of ROS was analyzed by flow cytometry using different fluorescent probes: Hydroethidine (HE) for superoxide anion, 2',7' Dichlorodihydrofluorescein diacetate (DCFH-DA) for hydrogen peroxide; mitochondrial damage was examined with 3,3' Dihexyloxacarbocyanine iodide (DiOC6). We found that superoxide anion production in the three cell lines increased with irradiation time whereas no peroxide hydrogen was detected. Mitochondrial damage also increased in an irradiation time dependent manner, being higher in the Vincristine resistant line. Previous studies have demonstrated that apoptotic cell death increased with irradiation time, which is consistent with these results, indicating that ROS are critical in ALA-PDT efficiency to kill malignant cells.
Keywords
5-aminolevulinic acid
porphyrins
photodynamic therapy.
Diez, B., Cordo Russo, R., Teijo, M. J., Hajos, S., Batlle, A., & Fukuda, H. (2009). ROS production by endogenously generated protoporphyrin ix in murine leukemia cells. Cellular and Molecular Biology, 55(2), 15–19. Retrieved from https://cellmolbiol.org/index.php/CMB/article/view/1082
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX