Issue
Copyright (c) 2024 Ashraf Qurtam
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.CircRNAs in extracellular vesicles associated with triple-negative breast cancer
Corresponding Author(s) : Ashraf Ahmed Qurtam
Cellular and Molecular Biology,
Vol. 70 No. 12: Issue 12
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive cancer with distant metastasis. Accumulated evidence has demonstrated that exosomes are involved in TNBC metastasis. Elucidating the mechanism underlying TNBC metastasis has important clinical significance. Extracellular vesicles (EVs) present a promising avenue for diagnosing and treating triple-negative breast cancer (TNBC) through a technique called "liquid biopsy," offering a new wellspring of biomarkers. These tiny lipid bilayer vesicles, released by most cells, carry a diverse array of RNA molecules that can influence the behaviour of recipient cells. Among these, circular RNAs (circRNAs) have emerged as a subtype of noncoding RNAs capable of modulating gene expression by sponging microRNAs, thus playing crucial roles in various aspects of cancer development and progression, including TNBC. Despite their significance, our understanding of circRNAs involvement in TNBC remains incomplete. However, studies have shown that circRNAs are abundant in EVs, with exosomal circRNAs (exo-circRNAs) particularly influential in cancer biology. These exo-circRNAs can be taken up by neighboring or distant cells, impacting numerous aspects of their physiological states, thereby enhancing cell communication and tumor dissemination. This review provides an overview of EVs key characteristics and functions before delving into exo-circRNAs potential roles in driving or suppressing TNBC, as well as their implications for cancer diagnosis, prognosis, and monitoring.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX