Issue
Impact of citrate- and chitosan-capped gold nanoparticles on the liver of Swiss albino mice: Histological and cyto-genotoxic study
Corresponding Author(s) : Ayman S. EL-Seedy
Cellular and Molecular Biology,
Vol. 65 No. 5: Issue 5
Abstract
The present study aimed to disclose the histological alterations and cyto-genotoxic potential induced by citrate- and chitosan-capped AuNPs on liver of adult Swiss albino mice. Animals were randomly divided into 8 groups. The first two groups were intraperitoneally (i.p) injected with physiological saline once and left for 10 days and every other day for 21 days, respectively, and kept as negative control groups. While the third and fourth groups were injected i.p with a single dose of 2 mg/kg of citrate- and chitosan-capped AuNPs, respectively, and left for 10 days. The fifth and sixth groups were injected i.p every other day for 21 days with 200 µg/kg of citrate- and chitosan-capped AuNPs, respectively. Animals of the seventh and eighth groups were injected i.p with 50 mg/kg cyclophosphamide once and left for 10 days and with 20 mg/kg cyclophosphamide every other day for 21 days, respectively. The livers of mice were dissected and processed for microscopic examination and for analyzing the expression of inflammation-related genes using RT-PCR. In addition, bone marrow samples were taken to investigate the mitotic index and the chromosomal aberrations. The present study showed various degrees of structural changes in the liver of animals received AuNPs. Such changes were more prominent in animals treated with a single dose of AuNPs, particularly with citrate-capped AuNPs as compared to chitosan-capped AuNPs. Furthermore, genotoxic analysis did not reveal any genotoxicity for AuNPs with both coats. Therefore, chitosan-capped AuNPs were less hepatotoxic than citrate-capped ones. However, it has not been proven that AuNPs are genotoxic by both coats.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: An overview of preparation and characterization. J Applied Pharm Sci 2011; 1: 228-234.
- Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2: 282-289.
- Laurent S, Forge D, Port M, Roch A, Robic C, Vander L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2010; 110: 2574–2574
- Abhilash M. Potential applications of Nanoparticles. Int J Pharma Bio Sci 2010; 1:1-12.
- Jamal SA. Application of Nanoparticles of Ceramics, Peptides, Silicon, Carbon, and Diamonds in Tissue Engineering. Chemical Sciences Journal 2013; CSJ -91.
- Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2:17-172.
- Xia Q, Li H, Liu Y, Zhang S, Feng Q, Xiao K. The effect of particle size on the genotoxicity of gold nanoparticles. J Biomed Mater Res A 2017; 105:710-719.
- Khan JA, Pillai B, Das TK, Singh Y, Maiti S. Molecular effects of uptake of gold nanoparticles in hela cells. Chembiochem 2007; 8:1237-1240.
- Wang SH, Lee CW, Chiou A, Wei PK. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. Journal of Nanobiotechnology 2010; 8:33.
- Malathi S, Balakumaran MD, Kalaichelvan PT, Balasubramanian S. Green synthesis of gold nanoparticles for controlled delivery. Adv Mater Lett 2013; 4:933–940.
- Boyles M, Krist T, Andosch A, Zimmermann M, Tran N, Casals E, Himly M, Puntes V, Huber C, Lütz-Meind U, Duschl A. Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. Journal of Nanobiotechnology 2015; 13:84.
- Yang PH, Sun XS, Chiu JF, Sun HZ, He QY. Transferrin-mediated gold nanoparticle cellular uptake. Bioconjugate Chem 2005; 16:494-496.
- Amidi M, Hennink WE. Chitosan-based formulations of drugs, imaging agents and biotherapeutics. Adv Drug Deliv Rev 2010; 62:1–118.
- Chen Z, Wang Z, Chen X, Xu H, Liu J. Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin. J Nanopart Res 2013; 15:1–9.
- Regiel-Futyra A, Kus-LiÅ›kiewicz M, Sebastian V, Irusta S, Arruebo M, Stochel G, KyzioÅ‚ A. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl Mater Interfaces 2015; 7:1087–1099.
- Ing LY, Zin NM, Sarwar A, Katas H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012; 12 :632- 698.
- Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11:1812–1818
- Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 2010; 31:2034.
- Guglielmo CD, Lapuente JD, Porredon C, Ramos-Lopez D, Sendra J, Borr M. In vitro safety toxicology data for evaluation of gold nanoparticles-chronic cytotoxicity, genotoxicity and uptake. J Nanosci Nanotechnol 2012; 12:685.
- Cardoso E, Rezin GT, Zanoni ET, de Souza Notoya F, Leffa DD, Damiani AP, Daumann F, Rodriguez JC, Benavides R, da Silva L, Andrade VM, da Silva Paula MM. Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats. Mutat Res 2014; 766:25.
- Schulz M, Ma-Hock L, Brill S, Strauss V, Treumann S, Groters S, et al. Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. Mutat Res 745 (2011) 51.
- Nelson BC, Petersen EJ, Marquis BJ, Atha DH, Elliott JT, Cleveland D, Watson SS, Tseng H, Dillon A, Theodore M, Jackman J. NIST gold nanoparticle reference materials do not induce oxidative DNA damage. Nanotoxicology 2013; 7:21.
- May S, Hirsch C, Ripp ., Bohmer N, Kaiser JP, Diener L, Wichser A, Bürkleb A, Wick P. Transient DNA damage following exposure to gold nanoparticles. Nanoscale 2018; 10:15723-15735
- Mcfarland AD, Haynes CL, Mirkin CA, Van Duyne RP, Godwin HA. Citrate synthesis of gold nanoparticles. J Chem Educ 2004; 81: 544.
- Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 2007; 24:1415-1426.
- Sengupta J, Datta P, Patra HK, Dasgupta AK, Gomes A. In vivo interaction of gold nanoparticles after acute and chronic exposures in experimental animal models. J Nanosci Nanotechnol 2013; 13:1660-1670.
- Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa-Ramanujam VM, et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 2010; 393:649-655.
- Hosseinimehr SJ, Ahmadashrafi S, Naghshvar F, Ahmadi A, Ehasnalavi S, Tanha M. Chemoprotective effects of Zataria multiflora against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Integr Cancer Ther 2010; 9:219-223.
- Sayed HM, Fouad D, Ataya FS, Hassan NH, Fahmy MA. The modifying effect of selenium and vitamins A, C, and E on the genotoxicity induced by sunset yellow in male mice. Mutat Res 2012; 744:145-153.
- Amelinckx S, van Dyck D, van Landuyt J, van Tendeloo G. Electron microscopy: principles and fundamentals. New Jersey: Wiley, 2008.
- Carleton HM, Rab D, Wallington EA. Carleton's histological technique. 5thed. Oxford: Oxford University Press, 1980.
- Bancroft JD, Gamble M. Theory and practice of histological techniques. 6thed. Philadelphia: Churchill Livingstone, Elsevier, 2008.
- Chaisera JM, Xu X. Liver function. In: Bishop ML, Fody EP, Schoeff LE (eds). Clinical chemistry: principles, techniques, and correlations, 7thed. Philadelphia: Lippincott Williams & Wilkins 2013; 519-542.
- Win-Shwe TT, Mitsushima M, Yamamoto S, Fukushima AT, Funabashi T, Kobayashi T, et al. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure. Toxicol Appl Pharmacol 2008; 226: 192-198.
- Brusick D. Principles of genetic toxicology. New York: Plenum Press, 1980.
- Kotz S, Balakrishnan N, Read CB, Vidakovic B. Encyclopedia of statistical sciences. 2nded. Hoboken, New Jersey: Wiley-Interscience, 2006.
- Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 2011; 149:65-71.
- Yah CS. The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res 2013; 24:400-413.
- Munding J, Tannapfel A. Anatomy of the liver. What does the radiologist need to know? Der Radiologe 2011; 51:655-660.
- De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008; 29:1912-1919.
- Yang L, Kuang H, Zhang W, Aguilar ZP, Wei H, Xu H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Scientific Reports 2017; 7: 3303.
- Paino IM, Marangoni VS, de Oliveir RC, Antunes LM, Zucolotto V. Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells Toxicol Lett 2012; 215:119-125.
- Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, et al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 2008; 4:2108-2111.
- Abdelhalim MA, Mady MM. Liver uptake of gold nanoparticles after intraperitoneal administration in vivo: a fluorescence study. Lipids Health Dis 2011; 10:195.
- Gosens I, Post JA, de la Fonteyne LJ, Jansen EM, Geus JW, Cassee FR, et al. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part. Fibre. Toxicol. 7 (2010) 37.
- Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010; 6: 12-21.
- Oliveira M, Ugarte D, Zanchet D, Zarbin A. Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 2005; 292: 429-435.
- Bai J, Li Y, Du J, Wang S, Zheng J, Yang Q, et al. One-pot synthesis of polyacrylamide-gold nanocomposite. Mater Chem Phys 2007; 106:412-415.
- Bautista-Banosa S, Hernandez-Lauzardoa A, Velázquez-del Vallea MG, Hernandez-Lopeza M, Barkab EA, Bosquez-Molinac E, et al. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection. 25 (2006) :108-118.
- Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, Biomaterials. 29 (2008) :1912-1919
- Glare EM, Divjak M, Bailey MJ, Walters EH. β-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax 2002; 57:765-770.
- Sindhu Priya ES, Pate D, Venkata-Krishna K, Nagashree KS, Shyam-Prasad K, Lingaraju HB. Anticlastogenic activity of hydroalcoholic extract of mangifera indica linn. Using mammalian chromosomal aberration test in bone marrow of mice. IAJPR 2014; 4: 3143-3151.
- Frohberg H. Critique of in vivo cytogenetic test system. Inflamm Res 1973; 3:119-123.
- Enustun BV, Turkevich J. Coagulation of colloid gold. J Am Chem Soc 1963; 85:3317.
- Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104: 293-346.
- Bastús GN, Merkoçi F, Piella J, Puntes V. Synthesis of highly monodisperse citrate-stabilized metal nanoparticles: kinetic control and catalytic properties. Chem Mater 2014; 26: 2836-2846.
- Rozenberg BA, Tenne R. Polymer-assisted fabrication of nanoparticles and nanocomposites, Progress Polymer Sci. 30 (2008) :40-112.
- Medina-Ramirez I, Bashir S, Luo Z, Liu J.L. Green synthesis and characterization of polymer-stabilized metal nanoparticles. Colloids and Surfaces B-Biointerfaces 2009; 73: 185-191.
- Link S, El-Sayed M. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J Phys Chem B 1999; 103:4212-4217.
- Pedersen DB, Duncan EJ. Surface plasmon resonance spectroscopy of gold nanoparticle-coated substrates: technical report. Canada: DRDC Suffield TR, 2005
- Saha P, Goyal AK, Rath G. Research article formulation and evaluation of chitosan-based ampicillin trihydrate nanoparticles. Trop J Pharm Res 2010; 9: 483-488.
- Kumar V, Cotran RS, Robbins SL. Basic pathology. 9thed. Philadelphia: WB Saunders, 2003.
- Risom L, Moller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 2005; 592:119-137.
- Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113: 823-839.
- Shrivastava R., Kushwaha P., Bhutia YC., Flora S.J. Oxidative stress following exposure to silver and gold nanoparticles in mice. Toxicology and Industrial Health 2016; 32: 1391–1404.
- Sun H, Liu Y, Bai X, Zhou X, Zhou H, Liu S, Yan B. Induction of oxidative stress and sensitization of cancer cells to paclitaxel by gold nanoparticles with different charge densities and hydrophobicities. J Mater Chem B 2018; 6:1633.
- Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, et al. Calcium and ROS-mediated activation of transcription factors and TNF-α cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 2004; 286:344-353.
- Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 2013; 1832:1049-1060.
- Abdelhalim M, Jarrar BM. Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver. Lipids in Health and Disease. 2011; 10:166.
- Gerlyng P, í…byholm A, Grotmo T, Erikstein B, Huitfeldt HS, Stokke T, Seglen PO Binucleation and polyploidization patterns in developmental and regenerative rat liver growth. Cell Proliferation 2008; 26:557–565.
- Phyllis AS, Margaret H, Liu MH, Tavoloni N. Origin, pattern, and mechanism of bile duct proliferation following biliary obstruction in the rat. Gastroenterology 1990; 99: 466-77.
- Burt AD, Sween RM. Bile duct proliferation”its true significance? Histopathology 1993; 23: 599-602.
- Steiner J, Baglio CM. Electron microscopy of the cytoplasm of parenchymal liver cells in α- Naphthyl- isothiocyanate- induced cirrhosis. Lab Invest 1963; 12:765.
- Ghadially FN. Ultrastructural pathology of the cell and matrix. 2nded. London: Butterworth, 1982.
- Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009; 5:2067-2076.
- Cole NB, Daniels MP, Levine RL, Kim G. Oxidative stress causes reversible changes in mitochondrial permeability and structure. Exp. Gerontol. 2010; 45:596-602.
- Huerta-García E, Pérez-Arizti JA, Márquez-Ramírez SG, Delgado-Buenrostro NL, Chirino YI, Iglesias GG, López-Marure R.Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radical Biology and Medicine 2014; 73:84-94
- Hyman J. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. Philadelphia: Lippincott Williams & Wilkins, 1999.
- Schönthal A.H. Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy. Scientifica 2012; 2012: 857516.
- Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response, Semin. Cell Dev Biol 2007; 18: 716-717.
- Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 2010; 12:2313-2333.
- Franco G, Dragoni S, Regoli M, Sgaragli G, Valoti M, Bertelli E. Gold nanoparticles uptake and cytotoxicity assessed on rat liver precision cut slices. Italian J Anatomy Embryol 2011;116:78.
- Rubin R, Strayer DS, Rubin E. Rubin's pathology: clinicopathologic foundations of medicine. 6thed. Philadelphia: Lippincott Williams & Wilkins, 2011
- Montironi R, Scarpelli M, Braccischi A, Galluzzi C, Diamanti L, Alberti R. Quantitative analysis of nucleolar margination in diagnostic cytopathology. Virchows Arch A Pathol Anat Histopathol 1991; 419: 505-512.
- Kim HJ, Lee HK, Cho JH. Factor analysis of the biochemical markers related to liver cirrhosis. Pakistan Journal of Medical Sciences 2015; 31:1043-1046.
- Zhang XD, Wu D, Shen X, Liu PX, Yang N, Zhao B, et al. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomedicine 2011; 6:2071-2081.
- Rambanapasi JR, Zeevaart H, Buntting C, Bester D, Kotze C, Hayeshi R, Grobler A. Bioaccumulation and Subchronic Toxicity of 14 Nm Gold Nanoparticles in Rats, Molecules 2016; 21:763.
- Da Sacco L, Masotti A. Chitin and chitosan as multipurpose natural polymers for groundwater arsenic removal and AS2O3 delivery in tumor therapy. Mar Drugs 2010;15 :1518-1525.
- Goodman CM, Mccusker CD, Yilmaz T, Rotello VM. Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains. Bioconjugate Chem 2004; 15: 897-900.
- Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlagera JJ, Hussain SM. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 2011; 4: 410-420.
- Oikawa D, Akai R, Tokuda M, Takao I. A transgenic mouse model for monitoring oxidative stress. Scientific report 2012; 2: 229.
- Arnid-Malugina A, Ghandeharia H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010; 30: 212-217.
- Fox JG, Barthold S, Davisson M, Newcomer CE, Quimby FW, Smith A. The mouse in biomedical research, normative biology, husbandry, and models. 2nded. New York: Academic Press, 2006.
- Lipponen P. Mitotic indexes as indicators of malignancy in human tumors. Int J Oncol. 1992; 1: 387-392.
- Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB, et al. Campbell biology in focus.1sted. San Francisco: Benjamin Cummings, 2014.
- Hosseinimehr SJ, Karami M. Chemoprotective effects of captopril against cyclophosphamide-induced genotoxicity in mouse bone marrow cells. Arch. Toxicol. 2005; 79: 482–486.
- Samia AA, Mostafa MA, Heba SK, Sahar SM, Eman IZ. Study of the genotoxic effect of cyclophosphamide on albino Mice bone marrow polychromatic erythrocytes and the protective effect of captopril. Bull Alex Fac Med 2008; 44: 4-10.
- Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure part. Fibre Toxicol 2005; 2:10.
- Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy I.M., Barakat A.I, Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 2007; 115: 403-409.
- Nabiev I, Mitchel S, Davies A, Williams Y, Kelleher D, Moore R, et al. Nonfunctionalized nanocrystals can exploit a cell's active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett 2007; 7: 3452-3461.
- Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 2009; 30: 3891-3914.
- Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 2003; 39: 405-410.
- Luo Q, Li Y, Zhang Z. A systematic assessment of genotoxicity on pivaloylacylation-7ADCA-a wide existing antibiotic impurity. Int J Clin Exp Med 2014; 7: 4260-4271.
- Klien K, Godnić-Cvar J. Genotoxicity of metal nanoparticles: focus on in vivo studies genotoxicity of metal nanoparticles. Arh Hig Rada Toksikol 2012; 63:133-145.
- Schulz M, Ma-Hock L, Brill S, Strauss V, Treumann S, Groters S, et al. Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. Mutat Res 2011; 22: 745-751.
- Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stoe V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 2010; 40:328-346.
- Hong SC, Lee JH, Lee J, Kim HY, Park JY, Cho J, et al. Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. Int J Nanomedicine 2011; 6: 3219-3231.
References
Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: An overview of preparation and characterization. J Applied Pharm Sci 2011; 1: 228-234.
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2: 282-289.
Laurent S, Forge D, Port M, Roch A, Robic C, Vander L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2010; 110: 2574–2574
Abhilash M. Potential applications of Nanoparticles. Int J Pharma Bio Sci 2010; 1:1-12.
Jamal SA. Application of Nanoparticles of Ceramics, Peptides, Silicon, Carbon, and Diamonds in Tissue Engineering. Chemical Sciences Journal 2013; CSJ -91.
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2:17-172.
Xia Q, Li H, Liu Y, Zhang S, Feng Q, Xiao K. The effect of particle size on the genotoxicity of gold nanoparticles. J Biomed Mater Res A 2017; 105:710-719.
Khan JA, Pillai B, Das TK, Singh Y, Maiti S. Molecular effects of uptake of gold nanoparticles in hela cells. Chembiochem 2007; 8:1237-1240.
Wang SH, Lee CW, Chiou A, Wei PK. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. Journal of Nanobiotechnology 2010; 8:33.
Malathi S, Balakumaran MD, Kalaichelvan PT, Balasubramanian S. Green synthesis of gold nanoparticles for controlled delivery. Adv Mater Lett 2013; 4:933–940.
Boyles M, Krist T, Andosch A, Zimmermann M, Tran N, Casals E, Himly M, Puntes V, Huber C, Lütz-Meind U, Duschl A. Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. Journal of Nanobiotechnology 2015; 13:84.
Yang PH, Sun XS, Chiu JF, Sun HZ, He QY. Transferrin-mediated gold nanoparticle cellular uptake. Bioconjugate Chem 2005; 16:494-496.
Amidi M, Hennink WE. Chitosan-based formulations of drugs, imaging agents and biotherapeutics. Adv Drug Deliv Rev 2010; 62:1–118.
Chen Z, Wang Z, Chen X, Xu H, Liu J. Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin. J Nanopart Res 2013; 15:1–9.
Regiel-Futyra A, Kus-LiÅ›kiewicz M, Sebastian V, Irusta S, Arruebo M, Stochel G, KyzioÅ‚ A. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl Mater Interfaces 2015; 7:1087–1099.
Ing LY, Zin NM, Sarwar A, Katas H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012; 12 :632- 698.
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11:1812–1818
Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 2010; 31:2034.
Guglielmo CD, Lapuente JD, Porredon C, Ramos-Lopez D, Sendra J, Borr M. In vitro safety toxicology data for evaluation of gold nanoparticles-chronic cytotoxicity, genotoxicity and uptake. J Nanosci Nanotechnol 2012; 12:685.
Cardoso E, Rezin GT, Zanoni ET, de Souza Notoya F, Leffa DD, Damiani AP, Daumann F, Rodriguez JC, Benavides R, da Silva L, Andrade VM, da Silva Paula MM. Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats. Mutat Res 2014; 766:25.
Schulz M, Ma-Hock L, Brill S, Strauss V, Treumann S, Groters S, et al. Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. Mutat Res 745 (2011) 51.
Nelson BC, Petersen EJ, Marquis BJ, Atha DH, Elliott JT, Cleveland D, Watson SS, Tseng H, Dillon A, Theodore M, Jackman J. NIST gold nanoparticle reference materials do not induce oxidative DNA damage. Nanotoxicology 2013; 7:21.
May S, Hirsch C, Ripp ., Bohmer N, Kaiser JP, Diener L, Wichser A, Bürkleb A, Wick P. Transient DNA damage following exposure to gold nanoparticles. Nanoscale 2018; 10:15723-15735
Mcfarland AD, Haynes CL, Mirkin CA, Van Duyne RP, Godwin HA. Citrate synthesis of gold nanoparticles. J Chem Educ 2004; 81: 544.
Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 2007; 24:1415-1426.
Sengupta J, Datta P, Patra HK, Dasgupta AK, Gomes A. In vivo interaction of gold nanoparticles after acute and chronic exposures in experimental animal models. J Nanosci Nanotechnol 2013; 13:1660-1670.
Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa-Ramanujam VM, et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 2010; 393:649-655.
Hosseinimehr SJ, Ahmadashrafi S, Naghshvar F, Ahmadi A, Ehasnalavi S, Tanha M. Chemoprotective effects of Zataria multiflora against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Integr Cancer Ther 2010; 9:219-223.
Sayed HM, Fouad D, Ataya FS, Hassan NH, Fahmy MA. The modifying effect of selenium and vitamins A, C, and E on the genotoxicity induced by sunset yellow in male mice. Mutat Res 2012; 744:145-153.
Amelinckx S, van Dyck D, van Landuyt J, van Tendeloo G. Electron microscopy: principles and fundamentals. New Jersey: Wiley, 2008.
Carleton HM, Rab D, Wallington EA. Carleton's histological technique. 5thed. Oxford: Oxford University Press, 1980.
Bancroft JD, Gamble M. Theory and practice of histological techniques. 6thed. Philadelphia: Churchill Livingstone, Elsevier, 2008.
Chaisera JM, Xu X. Liver function. In: Bishop ML, Fody EP, Schoeff LE (eds). Clinical chemistry: principles, techniques, and correlations, 7thed. Philadelphia: Lippincott Williams & Wilkins 2013; 519-542.
Win-Shwe TT, Mitsushima M, Yamamoto S, Fukushima AT, Funabashi T, Kobayashi T, et al. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure. Toxicol Appl Pharmacol 2008; 226: 192-198.
Brusick D. Principles of genetic toxicology. New York: Plenum Press, 1980.
Kotz S, Balakrishnan N, Read CB, Vidakovic B. Encyclopedia of statistical sciences. 2nded. Hoboken, New Jersey: Wiley-Interscience, 2006.
Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 2011; 149:65-71.
Yah CS. The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res 2013; 24:400-413.
Munding J, Tannapfel A. Anatomy of the liver. What does the radiologist need to know? Der Radiologe 2011; 51:655-660.
De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008; 29:1912-1919.
Yang L, Kuang H, Zhang W, Aguilar ZP, Wei H, Xu H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Scientific Reports 2017; 7: 3303.
Paino IM, Marangoni VS, de Oliveir RC, Antunes LM, Zucolotto V. Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells Toxicol Lett 2012; 215:119-125.
Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, et al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 2008; 4:2108-2111.
Abdelhalim MA, Mady MM. Liver uptake of gold nanoparticles after intraperitoneal administration in vivo: a fluorescence study. Lipids Health Dis 2011; 10:195.
Gosens I, Post JA, de la Fonteyne LJ, Jansen EM, Geus JW, Cassee FR, et al. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part. Fibre. Toxicol. 7 (2010) 37.
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010; 6: 12-21.
Oliveira M, Ugarte D, Zanchet D, Zarbin A. Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 2005; 292: 429-435.
Bai J, Li Y, Du J, Wang S, Zheng J, Yang Q, et al. One-pot synthesis of polyacrylamide-gold nanocomposite. Mater Chem Phys 2007; 106:412-415.
Bautista-Banosa S, Hernandez-Lauzardoa A, Velázquez-del Vallea MG, Hernandez-Lopeza M, Barkab EA, Bosquez-Molinac E, et al. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection. 25 (2006) :108-118.
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, Biomaterials. 29 (2008) :1912-1919
Glare EM, Divjak M, Bailey MJ, Walters EH. β-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax 2002; 57:765-770.
Sindhu Priya ES, Pate D, Venkata-Krishna K, Nagashree KS, Shyam-Prasad K, Lingaraju HB. Anticlastogenic activity of hydroalcoholic extract of mangifera indica linn. Using mammalian chromosomal aberration test in bone marrow of mice. IAJPR 2014; 4: 3143-3151.
Frohberg H. Critique of in vivo cytogenetic test system. Inflamm Res 1973; 3:119-123.
Enustun BV, Turkevich J. Coagulation of colloid gold. J Am Chem Soc 1963; 85:3317.
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104: 293-346.
Bastús GN, Merkoçi F, Piella J, Puntes V. Synthesis of highly monodisperse citrate-stabilized metal nanoparticles: kinetic control and catalytic properties. Chem Mater 2014; 26: 2836-2846.
Rozenberg BA, Tenne R. Polymer-assisted fabrication of nanoparticles and nanocomposites, Progress Polymer Sci. 30 (2008) :40-112.
Medina-Ramirez I, Bashir S, Luo Z, Liu J.L. Green synthesis and characterization of polymer-stabilized metal nanoparticles. Colloids and Surfaces B-Biointerfaces 2009; 73: 185-191.
Link S, El-Sayed M. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J Phys Chem B 1999; 103:4212-4217.
Pedersen DB, Duncan EJ. Surface plasmon resonance spectroscopy of gold nanoparticle-coated substrates: technical report. Canada: DRDC Suffield TR, 2005
Saha P, Goyal AK, Rath G. Research article formulation and evaluation of chitosan-based ampicillin trihydrate nanoparticles. Trop J Pharm Res 2010; 9: 483-488.
Kumar V, Cotran RS, Robbins SL. Basic pathology. 9thed. Philadelphia: WB Saunders, 2003.
Risom L, Moller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 2005; 592:119-137.
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113: 823-839.
Shrivastava R., Kushwaha P., Bhutia YC., Flora S.J. Oxidative stress following exposure to silver and gold nanoparticles in mice. Toxicology and Industrial Health 2016; 32: 1391–1404.
Sun H, Liu Y, Bai X, Zhou X, Zhou H, Liu S, Yan B. Induction of oxidative stress and sensitization of cancer cells to paclitaxel by gold nanoparticles with different charge densities and hydrophobicities. J Mater Chem B 2018; 6:1633.
Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, et al. Calcium and ROS-mediated activation of transcription factors and TNF-α cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 2004; 286:344-353.
Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 2013; 1832:1049-1060.
Abdelhalim M, Jarrar BM. Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver. Lipids in Health and Disease. 2011; 10:166.
Gerlyng P, í…byholm A, Grotmo T, Erikstein B, Huitfeldt HS, Stokke T, Seglen PO Binucleation and polyploidization patterns in developmental and regenerative rat liver growth. Cell Proliferation 2008; 26:557–565.
Phyllis AS, Margaret H, Liu MH, Tavoloni N. Origin, pattern, and mechanism of bile duct proliferation following biliary obstruction in the rat. Gastroenterology 1990; 99: 466-77.
Burt AD, Sween RM. Bile duct proliferation”its true significance? Histopathology 1993; 23: 599-602.
Steiner J, Baglio CM. Electron microscopy of the cytoplasm of parenchymal liver cells in α- Naphthyl- isothiocyanate- induced cirrhosis. Lab Invest 1963; 12:765.
Ghadially FN. Ultrastructural pathology of the cell and matrix. 2nded. London: Butterworth, 1982.
Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009; 5:2067-2076.
Cole NB, Daniels MP, Levine RL, Kim G. Oxidative stress causes reversible changes in mitochondrial permeability and structure. Exp. Gerontol. 2010; 45:596-602.
Huerta-García E, Pérez-Arizti JA, Márquez-Ramírez SG, Delgado-Buenrostro NL, Chirino YI, Iglesias GG, López-Marure R.Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radical Biology and Medicine 2014; 73:84-94
Hyman J. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. Philadelphia: Lippincott Williams & Wilkins, 1999.
Schönthal A.H. Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy. Scientifica 2012; 2012: 857516.
Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response, Semin. Cell Dev Biol 2007; 18: 716-717.
Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 2010; 12:2313-2333.
Franco G, Dragoni S, Regoli M, Sgaragli G, Valoti M, Bertelli E. Gold nanoparticles uptake and cytotoxicity assessed on rat liver precision cut slices. Italian J Anatomy Embryol 2011;116:78.
Rubin R, Strayer DS, Rubin E. Rubin's pathology: clinicopathologic foundations of medicine. 6thed. Philadelphia: Lippincott Williams & Wilkins, 2011
Montironi R, Scarpelli M, Braccischi A, Galluzzi C, Diamanti L, Alberti R. Quantitative analysis of nucleolar margination in diagnostic cytopathology. Virchows Arch A Pathol Anat Histopathol 1991; 419: 505-512.
Kim HJ, Lee HK, Cho JH. Factor analysis of the biochemical markers related to liver cirrhosis. Pakistan Journal of Medical Sciences 2015; 31:1043-1046.
Zhang XD, Wu D, Shen X, Liu PX, Yang N, Zhao B, et al. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomedicine 2011; 6:2071-2081.
Rambanapasi JR, Zeevaart H, Buntting C, Bester D, Kotze C, Hayeshi R, Grobler A. Bioaccumulation and Subchronic Toxicity of 14 Nm Gold Nanoparticles in Rats, Molecules 2016; 21:763.
Da Sacco L, Masotti A. Chitin and chitosan as multipurpose natural polymers for groundwater arsenic removal and AS2O3 delivery in tumor therapy. Mar Drugs 2010;15 :1518-1525.
Goodman CM, Mccusker CD, Yilmaz T, Rotello VM. Toxicity of Gold Nanoparticles Functionalized with Cationic and Anionic Side Chains. Bioconjugate Chem 2004; 15: 897-900.
Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlagera JJ, Hussain SM. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 2011; 4: 410-420.
Oikawa D, Akai R, Tokuda M, Takao I. A transgenic mouse model for monitoring oxidative stress. Scientific report 2012; 2: 229.
Arnid-Malugina A, Ghandeharia H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010; 30: 212-217.
Fox JG, Barthold S, Davisson M, Newcomer CE, Quimby FW, Smith A. The mouse in biomedical research, normative biology, husbandry, and models. 2nded. New York: Academic Press, 2006.
Lipponen P. Mitotic indexes as indicators of malignancy in human tumors. Int J Oncol. 1992; 1: 387-392.
Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB, et al. Campbell biology in focus.1sted. San Francisco: Benjamin Cummings, 2014.
Hosseinimehr SJ, Karami M. Chemoprotective effects of captopril against cyclophosphamide-induced genotoxicity in mouse bone marrow cells. Arch. Toxicol. 2005; 79: 482–486.
Samia AA, Mostafa MA, Heba SK, Sahar SM, Eman IZ. Study of the genotoxic effect of cyclophosphamide on albino Mice bone marrow polychromatic erythrocytes and the protective effect of captopril. Bull Alex Fac Med 2008; 44: 4-10.
Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure part. Fibre Toxicol 2005; 2:10.
Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy I.M., Barakat A.I, Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 2007; 115: 403-409.
Nabiev I, Mitchel S, Davies A, Williams Y, Kelleher D, Moore R, et al. Nonfunctionalized nanocrystals can exploit a cell's active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett 2007; 7: 3452-3461.
Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 2009; 30: 3891-3914.
Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 2003; 39: 405-410.
Luo Q, Li Y, Zhang Z. A systematic assessment of genotoxicity on pivaloylacylation-7ADCA-a wide existing antibiotic impurity. Int J Clin Exp Med 2014; 7: 4260-4271.
Klien K, Godnić-Cvar J. Genotoxicity of metal nanoparticles: focus on in vivo studies genotoxicity of metal nanoparticles. Arh Hig Rada Toksikol 2012; 63:133-145.
Schulz M, Ma-Hock L, Brill S, Strauss V, Treumann S, Groters S, et al. Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. Mutat Res 2011; 22: 745-751.
Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stoe V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 2010; 40:328-346.
Hong SC, Lee JH, Lee J, Kim HY, Park JY, Cho J, et al. Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. Int J Nanomedicine 2011; 6: 3219-3231.