Issue
Estimating the modulatory effect of cadmium chloride on the genotoxicity and mutagenicity of silver nanoparticles in mice
Corresponding Author(s) : H. R. H. Mohamed
Cellular and Molecular Biology,
Vol. 63 No. 9: Issue 9
Abstract
Silver (Ag) nanoparticles (nano-Ag) are widely used because of their distinctive antimicrobial properties, but this widespread use increases Ag release into the environment along with many other pollutants such as heavy metals. Therefore, this study was undertaken to study the modulatory effect of cadmium chloride (CdCl2) on the genotoxicity and mutagenicity of nano-Ag in mice liver, kidney and brain tissues. Co-injections of CdCl2 (1.5 mg/kg) with nano-Ag (20, 41, or 82 mg/kg) resulted in significant elevations in both single and double DNA strand breaks that triggered higher apoptotic DNA damage, as revealed by the more fragmented appearance of genomic DNA and the significant increase in apoptotic fractions. Concurrent higher mutation incidence in the presenilin-1 and p53 genes was observed after CdCl2 co-treatment than in nano-Ag-treated groups. Immuno-histochemical localization of p53 protein revealed the overexpression of the p53 gene and the histological examination showed diffusely degenerated, congested blood vessels and the infiltration of leukocytes in the liver, kidney, and brain tissues of the groups co-treated with nano-Ag and CdCl2. Moreover, CdCl2 co-injection with nano-Ag increased reactive oxygen species (ROS) generation, as revealed by increased malondialdehyde levels, decreased glutathione levels, and decreased superoxide dismutase and glutathione peroxidase activity, compared with those induced by nano-Ag particles alone. We concluded that CdCl2 enhanced the nano-Ag-induced genotoxicity via increasing mutation incidence in p53 and presenilin-1 gene.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- References
- (1) Gottesman, R., Shukla, S., Perkas, N., Solovyov, L. A., Nitzan, Y., and Gedanken, A.. Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 2011; 27: 720–726.
- (2) Ribeiro M, Morgado P, Miguel S, Coutinho P, Correia I. Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng 2013; 33:2958–2966
- (3) Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D. Antimicrobial nanoma-terials for water disinfection and microbial control: potential applications and implications. Water Res 2008; 42:4591–602.
- (4) Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y. Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 2009; 331: 50–6.
- (5) Yang HL, Lin JC, Huang C. Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination? Water Res 2009; 43(15):3777–86.
- (6) Holtz RD, Lima BA, Souza, Filho AG, Brocchi M, Alves OL. Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed: Nanotechnol, Biol Med 2012; 6: 935–40.
- (7) Salata O. Application of nanoparticles in biology and medicine. J Nanobiotechnol 2004; 2:1-6.
- (8) Chen J, Choe MK, Chen S, Zhang S. Community environment and HIV/AIDS-related stigma in China. AIDS Educ Prev 2005; 17: 1-11.
- (9) Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 2005; 3:6.
- (10) Chen X and Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008; 176:1-12.
- (11) Asharani PV, Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 2009; 10: 65.
- (12) Ernest V, George Priya Doss C, Muthiah A, Mukherjee A, Chandrasekaran N. Genotoxicity assessment of low concentration AgNPs to human peripheral blood lymphocytes. Int J Pharm Pharm Sci 2013;5: 377-81.
- (13) Wong K.K., Cheung S.O., Huang L. Further evidence of the anti-inflammatory effects of silver nanoparticles. Chem Med Chem. 2009; 4(7):1129–1135.
- (14) Kim, S.; Choi, J.E.; Choi, J.; Chung, K.H.; Park, K.; Yi, J.; Ryu, D.Y. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro 2009; 23: 1076–1084.
- (15) Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al.. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 2009; 9:4924–32.
- (16) García-Alonso J, Farhan R. Khan, Superb K. Misra, Mark Turmaine,| Brian D. Smith, Philip S. Rainbow, Samuel N. Luoma, and Valsami-Jones E (2011). Cellular Internalization of Silver Nanoparticles in Gut Epithelia of the Estuarine Polychaete Nereis diversicolor Environ. Sci. Technol 2011; 45: 4630–4636
- (17) Lee TY, Liu MS, Huang LJ, Lue SI, Lin LC, Kwan AL, Yang RC. Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Part Fibre Toxicol 2013; 10: 40.
- (18) Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS and Yu IJ: Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 2008; 20:575–583.
- (19) Kim, J.S.; Sung, J.H.; Ji, J.H.; Song, K.S.; Lee, J.H.; Kang, C.S.; Yu, I.J. In vivo genotoxicity of silver nanoparticles after 90 day silver nanoparticle inhalation exposure. Saf. Health Work 2011; 2: 65–69.
- (20) Asharani, P. V., Wu, Y. L., Gong, Z., et al.. Toxicity of silver nanoparticles in zebra fish models. Nanotechnology 2008; 19 (25): 255102.
- (21) Asharani P. V., Lianwu Y., Gong Z., Valiyaveettil S. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 2011; 5:43–54.
- (22) Li W.-R, Xie X.-B., Shi Q.S., Duan S.S., Ou-Yang Y.-S., Chen Y.-B.. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011; 24: 135–141
- (23) Li F, Weir MD, Chen J, Xu HH. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent. Mater.2013; 29(4):450-461.
- (24) El Mahdya M.M, Salah Eldinb T.A, Alyd H.S, Mohammed F.F, Shaalan M.I. Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Experimental and Toxicologic Pathology 2014; 67: 21–29
- (25) Patlolla A.K, Hackett D and Tchounwou P. Genotoxicity study of silver nanoparticles in bone marrow cells of Sprague-Dawley rats. Food Chem Toxicol. 2015; 85:52-60.
- (26) Ordzhonikidze CG, Ramaiyya LK, Egorova EM, Rubanovich AV.. Genotoxic effects of silver nanoparticles on mice in vivo. Acta Naturae 2009; 1:99–101.
- (27) Tiwari DK, Jin T and Behari J. Dose-dependent in vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 2011; 21: 13-24.
- (28) Mohamed H.R.H . "Studies on the Genotoxicity Behavior of Silver Nanoparticles in the Presence of Heavy Metal Cadmium Chloride in Mice,” Journal of Nanomaterials 2016; 2016, Article ID 5283162, 12 pages
- (29) Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J and Ryu DY. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafi sh. Aquat Toxicol 2010; 100:151-9.
- (30) Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM and Rowe JJ. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 2010; 242:263-9.
- (31) Laban, G., Nies, L.F., Turco, R.F., Bickham, J.W. and Sepúlveda, M.S.. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 2010; 19: 1 – 11
- (32) Li, P.W., Kuo, T.H., Chang, J.H., Yeh, J.M. and Chan, W.H.. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicology Letters 2010; 2: 82 –87.
- (33) Philbrook, N.A., Winn, L.M., Afrooz, A.R., Saleh, N.B. and Walker, V.K.. The effect of TiO (2) and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicology and Applied Pharmacology 2011; 257: 429 – 436.
- (34) Attia A.A. Evaluation of the Testicular Alterations Induced By Silver Nanoparticles in Male Mice: Biochemical, Histological and Ultrastructural Studies. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2014; 4: 1558- 1589
- (35) Gromadzka-Ostrowska, J., Dziendzikowska, K., Lankoff, A., Dobrzyoska, M., Instanes, C., Brunborg, G. et al.: Silver Nanoparticles effects on epididymal sperm in rats. Toxicol Lett. 2014; 214: 251 - 258.
- (36) Chuang S. M., Wang I. C. and Yang J. L.. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis 2000; 21: 1423–1432.
- (37) Kim S., Moon C., Eun S., Ryu P. and Jo S.. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem. Biophys. Res. Commun. 2005; 328: 326–334.
- (38) Robinson JF, Yu X, Moreira EG, Hong S, and Faustman EM.. Arsenic- and cadmiuminduced toxicogenomic response in mouse embryos undergoing neurulation. Toxicol Appl Pharmacol 2011; 250:117-129.
- (39) Lau A., Zhang J. and Chiu J.. Acquired tolerance in cadmium adapted lung epithelial cells: roles of the c-Jun N-terminal kinase signaling pathway and basal level of metallothionein. Toxicol. Appl. Pharmacol. 2006; 215, 1–8.
- (40) Lopez E., Figueroa S., Oset-Gasque M. and Gonzalez M. P.. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br. J. Pharmacol. 2003; 138: 901–911.
- (41) Celik A, B¨uy¨ukakilli B, Cimen B, Tasdelen B, Ozturk M.I, and Eke, D. Assessment of cadmium genotoxicity in peripheral blood and bone marrow tissues of maleWistar rats, Toxicology Mechanism and Methods 2009; 19(2): 135–140
- (42) Cambier S, Gonzalez P, Durrieu G, and Bourdineaud J-P. Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicology and Environmental Safety 2010; 73(3): 312–319.
- (43) Abrahim K. S., Abdel-Gawad N. B., Mahmoud A. M, El- Gowaily M. M, Emara A. M, and Hwaihy M.M. Genotoxic effect of occupational exposure to cadmium,” Toxicology and Industrial Health 2011; 27(2): 173–179.
- (44) Ali T. H. . "Determination of the lethal dose 50% (LD50) of cadmium chloride and the histopathological changes in male mice liver and kidneys,” Journal of Education and Science 2012; 25(3):. 27–38
- (45) Tice R.R., Agurell E., Anderson V, Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J.C. and Sasaki Y.F.. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ. Mol. Mutagen. 2000; 35: 206–221.
- (46) Kizilian N, R.C. Wilkins, P. Reinhardt, C. Ferrarotto, J.R.N. McLean, J.P. Mc- Namee. Silver-stained comet assay for detection of apoptosis. Biotechniques 1999; 27: 926–929.
- (47) Attia S.M., S.A. Al-Bakheet, N.M. Al-Rasheed. Proanthocyanidins produce significant attenuation of doxorubicin-induced mutagenicity via suppression of oxidative stress. Oxid. Med. Cell Longev 2010; 3(6): 404–413.
- (48) Sriram MI, Kanth SB, Kalishwaralal K ,Gurunathan S. Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int J Nanomedicine 2010; 5: 753-762.
- (49) Gutierrez, M. I., Bhatia, K., Siwarski, D., Wolff, L., Magrath, I. T., Mushinski, J. F. and Huppi1, K. Infrequent p53 mutation in mouse tumors with deregulated myc. Cancer Res.1992; 52, 1032–1035.
- (50) Gautheron V., A. Auffret, M. P. Mattson, J. Mariani, and B. Vernet-der Garabedian. "A new and simple approach for genotyping Alzheimer's disease presenilin-1 mutant knock-in mice,” Journal of Neuroscience Methods 2009; 181(2): 235–240
- (51) Ohkawa, H., Ohishi, N. and Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 1979; 95: 351 – 358.
- (52) Beutler, E., O. Duron and B.M. Kelly. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963; 61: 882-888.
- (53) Nishikimi, M., Roa, N. A. and Yogi, K. Measurement of superoxide dismutase. Biochem. Biophys. Res. Commun. 1972; 46, 849–854.
- (54) Paglia, D. E. and Valentine, W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967; 70, 158–169.
- (55) Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure–a review of the literature and a risk estimate. Scand J Work Environ Health. 1998; 24:1–51.
- (56) Jarup L and Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238:201–8.
- (57) Genter M.B, Newman N.C, H.G Shertzer, Ali S.F and Bolon B. Distribution and Systemic Effects of Intranasally Administered 25 nm Silver Nanoparticles in Adult Mice. Toxicologic Pathology 2009; 40: 1004-1013
- (58) Guo H, Zhang J, Boudreau M, Meng J, Yin J-j, Liu J and Xu H. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Particle and Fibre Toxicology 2016; 2016: 13:21
- (59) Valverde M, Fortoul T. I, Dias-Barriga F, Mejia J and del Castillo E. R. Induction of genotoxicity by cadmium chloride inhalation in several organs of CD-1 mice. Mutagenesis 2000; 15(2): 109-114
- (60) BÅ‚asiak J. P. DNA-Damaging Effect of Cadmium and Protective Action of Quercetin Journal of Environmental Studies 2001; 10(6): 437-442
- (61) Nava-Hernández MP1, Hauad-Marroquín LA, Bassol-Mayagoitia S, García-Arenas G, Mercado-Hernández R, Echávarri-Guzmán MA, Cerda-Flores RM. Lead-, cadmium-, and arsenic-induced DNA damage in rat germinal cells. DNA Cell Biol. 2009 May; 28(5): 241-8.
- (62) Woodbine, L., Brunton, H., Goodarzi, A. A., Shibata, A. and Jeggo, P. A. Endogenously induced DNA double strand breaks arise in heterochromatic DNA regions and require ataxia telangiectasia mutated and Artemis for their repair. Nucleic Acids Res 2011; 39, 6986– 6997.
- (63) Casalino, E.; Sblano, C. and Landriscina, C. Enzyme activity alteration by cadmium administration to rats: The possibility of iron involvement in lipid peroxidation. Arch. Biochem. Biophys. 1997; 346, 171–179.
- (64) Yang, J.M.; Arnush, M.; Chen, Q.Y.; Wu, X.D.; Pang, B. and Jiang, X.Z. Cadmium-induced damage to primary cultures of rat Leydig cells. Reprod. Toxicol 2003; 17: 553–560.
- (65) Lips K and Kaina B. DNA-double stranded breaks trigger apoptosis in p53 deficient-fibroblasts. Carcinogenesis 2001; 22(4): 579-584
- (66) Tounekti1 O, Kenani1 A, Foray N, Orlowski S and Mir LM .The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway. British Journal of Cancer (2001) 84(9), 1272–1279
- (67) Norbury C.J and Zhivotovsky B. DNA damage-induced apoptosis. Oncogene 2004; 23: 2797–2808
- (68) Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature 2009; 461(7267):1071-1078.
- (69) Obe J, Johannes C and Schulte-Frohlinde D. DNA double-strands induced by sparsely ionizing radiation and endonucleases as a critical lesion for cell death, chromosomal aberrations, mutations and oncogenic transformation. Int. J. Radiat. Biol. 1992; 70: 199-208
- (70) Kaina B. Critical steps in alkylation-induced aberration formation. Mut. Res. 1998; 404: 119-124
- (71) Nilsberth C, Luthman J, Lannfelt L, Schultzberg M. Expression of presenilin-1 mRNA in rat peripheral organs and brain. Histochem J. Aug 1999; 31(8):515-23.
- (72) Van Ess P. J., Pedersen W. A., Culmsee C., Mattson ' M. P and Blouin R. A. Elevated hepatic and depressed renal cytochrome P450 activity in the Tg2576 transgenic mouse model of Alzheimer's disease. Journal of Neurochemistry 2002; 80, 571±578
- (73) Das I, Craig C, Funahashi Y, Jung KM, Kim TW, Byers R, Weng AP, Kutok JL, Aster JC, Kitajewski J. Notch oncoproteins depend on gamma-secretase/presenilin activity for processing and function. J Biol Chem 2004; 279:30771–30780.
- (74) Fraering PC. Structural and Functional Determinants of gamma-Secretase, an Intramembrane Protease Implicated in Alzheimer's Disease. Curr Genomics 2007; 8:531–549.
- (75) Boulton ME, Cai J, Grant MB. gamma-Secretase: a multifaceted regulator of angiogenesis. J Cell Mol Med 2008; 12:781–795.
- (76) Rahimi N, Golde TE, Meyer RD. Identification of ligand-induced proteolytic cleavage and ectodomain shedding of VEGFR-1/FLT1 in leukemic cancer cells. Cancer research 2009; 69:2607–2614.
- (77) Cacquevel M, Aeschbach L, Houacine J, Fraering PC. Alzheimer's Disease-Linked Mutations in Presenilin-1 Result in a Drastic Loss of Activity in Purified c-Secretase Complexes. PLoS ONE 2012; 7(4): e35133.
- (78) Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi TT, Takeda K, Kira J, Tabira T. Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer's disease. FASEB J 2005; 19: 255-257.
- (79) Ma L, Ohyagi Y, Miyoshi K, Sakae N, Motomura K, Taniwaki T, Furuya H, Takeda K, Tabira T, Kira J. Increase in p53 protein levels by presenilin-1 gene mutations and its inhibition by secretase inhibitors. J Alzheimers Dis.2009; 16(3):565-75.
- (80) Dorszewska J, Oczkowska A, Suwalska M, Rozycka A, Florczak-Wyspianska J, Dezor M, Lianeri M, Jagodzinski P, Kowalczyk M.J, Prendecki M, Kozubski W. Mutations in the exon 7 of Trp53 gene and the level of p53 protein in double transgenic mouse model of Alzheimer's disease. Folia Neuropathol 2014; 52 (1): 30-40
References
References
(1) Gottesman, R., Shukla, S., Perkas, N., Solovyov, L. A., Nitzan, Y., and Gedanken, A.. Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 2011; 27: 720–726.
(2) Ribeiro M, Morgado P, Miguel S, Coutinho P, Correia I. Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng 2013; 33:2958–2966
(3) Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D. Antimicrobial nanoma-terials for water disinfection and microbial control: potential applications and implications. Water Res 2008; 42:4591–602.
(4) Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y. Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 2009; 331: 50–6.
(5) Yang HL, Lin JC, Huang C. Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination? Water Res 2009; 43(15):3777–86.
(6) Holtz RD, Lima BA, Souza, Filho AG, Brocchi M, Alves OL. Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed: Nanotechnol, Biol Med 2012; 6: 935–40.
(7) Salata O. Application of nanoparticles in biology and medicine. J Nanobiotechnol 2004; 2:1-6.
(8) Chen J, Choe MK, Chen S, Zhang S. Community environment and HIV/AIDS-related stigma in China. AIDS Educ Prev 2005; 17: 1-11.
(9) Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 2005; 3:6.
(10) Chen X and Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008; 176:1-12.
(11) Asharani PV, Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 2009; 10: 65.
(12) Ernest V, George Priya Doss C, Muthiah A, Mukherjee A, Chandrasekaran N. Genotoxicity assessment of low concentration AgNPs to human peripheral blood lymphocytes. Int J Pharm Pharm Sci 2013;5: 377-81.
(13) Wong K.K., Cheung S.O., Huang L. Further evidence of the anti-inflammatory effects of silver nanoparticles. Chem Med Chem. 2009; 4(7):1129–1135.
(14) Kim, S.; Choi, J.E.; Choi, J.; Chung, K.H.; Park, K.; Yi, J.; Ryu, D.Y. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro 2009; 23: 1076–1084.
(15) Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al.. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 2009; 9:4924–32.
(16) García-Alonso J, Farhan R. Khan, Superb K. Misra, Mark Turmaine,| Brian D. Smith, Philip S. Rainbow, Samuel N. Luoma, and Valsami-Jones E (2011). Cellular Internalization of Silver Nanoparticles in Gut Epithelia of the Estuarine Polychaete Nereis diversicolor Environ. Sci. Technol 2011; 45: 4630–4636
(17) Lee TY, Liu MS, Huang LJ, Lue SI, Lin LC, Kwan AL, Yang RC. Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Part Fibre Toxicol 2013; 10: 40.
(18) Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS and Yu IJ: Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 2008; 20:575–583.
(19) Kim, J.S.; Sung, J.H.; Ji, J.H.; Song, K.S.; Lee, J.H.; Kang, C.S.; Yu, I.J. In vivo genotoxicity of silver nanoparticles after 90 day silver nanoparticle inhalation exposure. Saf. Health Work 2011; 2: 65–69.
(20) Asharani, P. V., Wu, Y. L., Gong, Z., et al.. Toxicity of silver nanoparticles in zebra fish models. Nanotechnology 2008; 19 (25): 255102.
(21) Asharani P. V., Lianwu Y., Gong Z., Valiyaveettil S. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 2011; 5:43–54.
(22) Li W.-R, Xie X.-B., Shi Q.S., Duan S.S., Ou-Yang Y.-S., Chen Y.-B.. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011; 24: 135–141
(23) Li F, Weir MD, Chen J, Xu HH. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent. Mater.2013; 29(4):450-461.
(24) El Mahdya M.M, Salah Eldinb T.A, Alyd H.S, Mohammed F.F, Shaalan M.I. Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Experimental and Toxicologic Pathology 2014; 67: 21–29
(25) Patlolla A.K, Hackett D and Tchounwou P. Genotoxicity study of silver nanoparticles in bone marrow cells of Sprague-Dawley rats. Food Chem Toxicol. 2015; 85:52-60.
(26) Ordzhonikidze CG, Ramaiyya LK, Egorova EM, Rubanovich AV.. Genotoxic effects of silver nanoparticles on mice in vivo. Acta Naturae 2009; 1:99–101.
(27) Tiwari DK, Jin T and Behari J. Dose-dependent in vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 2011; 21: 13-24.
(28) Mohamed H.R.H . "Studies on the Genotoxicity Behavior of Silver Nanoparticles in the Presence of Heavy Metal Cadmium Chloride in Mice,” Journal of Nanomaterials 2016; 2016, Article ID 5283162, 12 pages
(29) Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J and Ryu DY. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafi sh. Aquat Toxicol 2010; 100:151-9.
(30) Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM and Rowe JJ. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 2010; 242:263-9.
(31) Laban, G., Nies, L.F., Turco, R.F., Bickham, J.W. and Sepúlveda, M.S.. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 2010; 19: 1 – 11
(32) Li, P.W., Kuo, T.H., Chang, J.H., Yeh, J.M. and Chan, W.H.. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicology Letters 2010; 2: 82 –87.
(33) Philbrook, N.A., Winn, L.M., Afrooz, A.R., Saleh, N.B. and Walker, V.K.. The effect of TiO (2) and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicology and Applied Pharmacology 2011; 257: 429 – 436.
(34) Attia A.A. Evaluation of the Testicular Alterations Induced By Silver Nanoparticles in Male Mice: Biochemical, Histological and Ultrastructural Studies. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2014; 4: 1558- 1589
(35) Gromadzka-Ostrowska, J., Dziendzikowska, K., Lankoff, A., Dobrzyoska, M., Instanes, C., Brunborg, G. et al.: Silver Nanoparticles effects on epididymal sperm in rats. Toxicol Lett. 2014; 214: 251 - 258.
(36) Chuang S. M., Wang I. C. and Yang J. L.. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis 2000; 21: 1423–1432.
(37) Kim S., Moon C., Eun S., Ryu P. and Jo S.. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem. Biophys. Res. Commun. 2005; 328: 326–334.
(38) Robinson JF, Yu X, Moreira EG, Hong S, and Faustman EM.. Arsenic- and cadmiuminduced toxicogenomic response in mouse embryos undergoing neurulation. Toxicol Appl Pharmacol 2011; 250:117-129.
(39) Lau A., Zhang J. and Chiu J.. Acquired tolerance in cadmium adapted lung epithelial cells: roles of the c-Jun N-terminal kinase signaling pathway and basal level of metallothionein. Toxicol. Appl. Pharmacol. 2006; 215, 1–8.
(40) Lopez E., Figueroa S., Oset-Gasque M. and Gonzalez M. P.. Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br. J. Pharmacol. 2003; 138: 901–911.
(41) Celik A, B¨uy¨ukakilli B, Cimen B, Tasdelen B, Ozturk M.I, and Eke, D. Assessment of cadmium genotoxicity in peripheral blood and bone marrow tissues of maleWistar rats, Toxicology Mechanism and Methods 2009; 19(2): 135–140
(42) Cambier S, Gonzalez P, Durrieu G, and Bourdineaud J-P. Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicology and Environmental Safety 2010; 73(3): 312–319.
(43) Abrahim K. S., Abdel-Gawad N. B., Mahmoud A. M, El- Gowaily M. M, Emara A. M, and Hwaihy M.M. Genotoxic effect of occupational exposure to cadmium,” Toxicology and Industrial Health 2011; 27(2): 173–179.
(44) Ali T. H. . "Determination of the lethal dose 50% (LD50) of cadmium chloride and the histopathological changes in male mice liver and kidneys,” Journal of Education and Science 2012; 25(3):. 27–38
(45) Tice R.R., Agurell E., Anderson V, Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J.C. and Sasaki Y.F.. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ. Mol. Mutagen. 2000; 35: 206–221.
(46) Kizilian N, R.C. Wilkins, P. Reinhardt, C. Ferrarotto, J.R.N. McLean, J.P. Mc- Namee. Silver-stained comet assay for detection of apoptosis. Biotechniques 1999; 27: 926–929.
(47) Attia S.M., S.A. Al-Bakheet, N.M. Al-Rasheed. Proanthocyanidins produce significant attenuation of doxorubicin-induced mutagenicity via suppression of oxidative stress. Oxid. Med. Cell Longev 2010; 3(6): 404–413.
(48) Sriram MI, Kanth SB, Kalishwaralal K ,Gurunathan S. Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int J Nanomedicine 2010; 5: 753-762.
(49) Gutierrez, M. I., Bhatia, K., Siwarski, D., Wolff, L., Magrath, I. T., Mushinski, J. F. and Huppi1, K. Infrequent p53 mutation in mouse tumors with deregulated myc. Cancer Res.1992; 52, 1032–1035.
(50) Gautheron V., A. Auffret, M. P. Mattson, J. Mariani, and B. Vernet-der Garabedian. "A new and simple approach for genotyping Alzheimer's disease presenilin-1 mutant knock-in mice,” Journal of Neuroscience Methods 2009; 181(2): 235–240
(51) Ohkawa, H., Ohishi, N. and Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 1979; 95: 351 – 358.
(52) Beutler, E., O. Duron and B.M. Kelly. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963; 61: 882-888.
(53) Nishikimi, M., Roa, N. A. and Yogi, K. Measurement of superoxide dismutase. Biochem. Biophys. Res. Commun. 1972; 46, 849–854.
(54) Paglia, D. E. and Valentine, W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967; 70, 158–169.
(55) Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure–a review of the literature and a risk estimate. Scand J Work Environ Health. 1998; 24:1–51.
(56) Jarup L and Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238:201–8.
(57) Genter M.B, Newman N.C, H.G Shertzer, Ali S.F and Bolon B. Distribution and Systemic Effects of Intranasally Administered 25 nm Silver Nanoparticles in Adult Mice. Toxicologic Pathology 2009; 40: 1004-1013
(58) Guo H, Zhang J, Boudreau M, Meng J, Yin J-j, Liu J and Xu H. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Particle and Fibre Toxicology 2016; 2016: 13:21
(59) Valverde M, Fortoul T. I, Dias-Barriga F, Mejia J and del Castillo E. R. Induction of genotoxicity by cadmium chloride inhalation in several organs of CD-1 mice. Mutagenesis 2000; 15(2): 109-114
(60) BÅ‚asiak J. P. DNA-Damaging Effect of Cadmium and Protective Action of Quercetin Journal of Environmental Studies 2001; 10(6): 437-442
(61) Nava-Hernández MP1, Hauad-Marroquín LA, Bassol-Mayagoitia S, García-Arenas G, Mercado-Hernández R, Echávarri-Guzmán MA, Cerda-Flores RM. Lead-, cadmium-, and arsenic-induced DNA damage in rat germinal cells. DNA Cell Biol. 2009 May; 28(5): 241-8.
(62) Woodbine, L., Brunton, H., Goodarzi, A. A., Shibata, A. and Jeggo, P. A. Endogenously induced DNA double strand breaks arise in heterochromatic DNA regions and require ataxia telangiectasia mutated and Artemis for their repair. Nucleic Acids Res 2011; 39, 6986– 6997.
(63) Casalino, E.; Sblano, C. and Landriscina, C. Enzyme activity alteration by cadmium administration to rats: The possibility of iron involvement in lipid peroxidation. Arch. Biochem. Biophys. 1997; 346, 171–179.
(64) Yang, J.M.; Arnush, M.; Chen, Q.Y.; Wu, X.D.; Pang, B. and Jiang, X.Z. Cadmium-induced damage to primary cultures of rat Leydig cells. Reprod. Toxicol 2003; 17: 553–560.
(65) Lips K and Kaina B. DNA-double stranded breaks trigger apoptosis in p53 deficient-fibroblasts. Carcinogenesis 2001; 22(4): 579-584
(66) Tounekti1 O, Kenani1 A, Foray N, Orlowski S and Mir LM .The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway. British Journal of Cancer (2001) 84(9), 1272–1279
(67) Norbury C.J and Zhivotovsky B. DNA damage-induced apoptosis. Oncogene 2004; 23: 2797–2808
(68) Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature 2009; 461(7267):1071-1078.
(69) Obe J, Johannes C and Schulte-Frohlinde D. DNA double-strands induced by sparsely ionizing radiation and endonucleases as a critical lesion for cell death, chromosomal aberrations, mutations and oncogenic transformation. Int. J. Radiat. Biol. 1992; 70: 199-208
(70) Kaina B. Critical steps in alkylation-induced aberration formation. Mut. Res. 1998; 404: 119-124
(71) Nilsberth C, Luthman J, Lannfelt L, Schultzberg M. Expression of presenilin-1 mRNA in rat peripheral organs and brain. Histochem J. Aug 1999; 31(8):515-23.
(72) Van Ess P. J., Pedersen W. A., Culmsee C., Mattson ' M. P and Blouin R. A. Elevated hepatic and depressed renal cytochrome P450 activity in the Tg2576 transgenic mouse model of Alzheimer's disease. Journal of Neurochemistry 2002; 80, 571±578
(73) Das I, Craig C, Funahashi Y, Jung KM, Kim TW, Byers R, Weng AP, Kutok JL, Aster JC, Kitajewski J. Notch oncoproteins depend on gamma-secretase/presenilin activity for processing and function. J Biol Chem 2004; 279:30771–30780.
(74) Fraering PC. Structural and Functional Determinants of gamma-Secretase, an Intramembrane Protease Implicated in Alzheimer's Disease. Curr Genomics 2007; 8:531–549.
(75) Boulton ME, Cai J, Grant MB. gamma-Secretase: a multifaceted regulator of angiogenesis. J Cell Mol Med 2008; 12:781–795.
(76) Rahimi N, Golde TE, Meyer RD. Identification of ligand-induced proteolytic cleavage and ectodomain shedding of VEGFR-1/FLT1 in leukemic cancer cells. Cancer research 2009; 69:2607–2614.
(77) Cacquevel M, Aeschbach L, Houacine J, Fraering PC. Alzheimer's Disease-Linked Mutations in Presenilin-1 Result in a Drastic Loss of Activity in Purified c-Secretase Complexes. PLoS ONE 2012; 7(4): e35133.
(78) Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi TT, Takeda K, Kira J, Tabira T. Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer's disease. FASEB J 2005; 19: 255-257.
(79) Ma L, Ohyagi Y, Miyoshi K, Sakae N, Motomura K, Taniwaki T, Furuya H, Takeda K, Tabira T, Kira J. Increase in p53 protein levels by presenilin-1 gene mutations and its inhibition by secretase inhibitors. J Alzheimers Dis.2009; 16(3):565-75.
(80) Dorszewska J, Oczkowska A, Suwalska M, Rozycka A, Florczak-Wyspianska J, Dezor M, Lianeri M, Jagodzinski P, Kowalczyk M.J, Prendecki M, Kozubski W. Mutations in the exon 7 of Trp53 gene and the level of p53 protein in double transgenic mouse model of Alzheimer's disease. Folia Neuropathol 2014; 52 (1): 30-40