Issue
Copyright (c) 2024 Ming Zhong, Wenxia Xu, Biao Tang, Qiang Zhao, Zenan Jiang, Yinfeng Liu
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.GAS5 promotes glucose metabolism reprogramming and resistance to ferroptosis of endothelial progenitor cells through the miR-495-3p/SIX1 and IGF2BP2/NRF2 dual-regulatory pathways in coronary heart disease
Corresponding Author(s) : Yinfeng Liu
Cellular and Molecular Biology,
Vol. 70 No. 9: Issue 9
Abstract
We aimed to explore the potential along with mechanism of lncRNA growth arrest-specific 5 (GAS5) in modulating glucose metabolism and ferroptosis of endothelial progenitor cells (EPCs) in coronary heart disease (CHD). CCK-8, flow cytometry, EdU, colony formation, scratch test as well as transwell assays were implemented to assess cell biological behaviors. Glucose uptake testing, lactic acid production assay, and detection of extracellular acidification rate (EACR) together with oxygen consumption rate (OCR) were used to assess glucose metabolism. Iron, GSH and MDA detection were used to measure ferroptosis. Besides, a series of mechanical experiments were implemented to clarify the modulatory relationship between GAS5 and nuclear factor erythroid 2-related factor 2 (NRF2) as well as sine oculis homeobox 1 (SIX1). We found that GAS5 was down-regulated in CHD patients relative to healthy controls. GAS5 depletion repressed EPCs proliferation, migration along with invasion while elevated cell apoptosis. GAS5 promoted the reprogramming of glucose metabolism and inhibited ferroptosis in EPCs. GAS5 affected glycometabolic reprogramming and ferroptosis resistance through regulating SIX1 and NRF2. On the one hand, GAS5 promoted NRF2 mRNA stability through IGF2BP2. On the other hand, GAS5 regulated the miR-495-3p/SIX1 axis in EPCs. To sum up, GAS5 promotes glucose metabolism reprogramming and resistance to ferroptosis of EPCs through the miR-495-3p/SIX1 and IGF2BP2/NRF2 dual-regulatory pathways in CHD.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX