Issue
Copyright (c) 2024 Engy Ahmed, Abeer Boseila, Amro Hanora, Samar Solyman
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Human Cathelicidin, LL-37 a potential antiviral therapeutic for Rift Valley Fever Virus in Egypt
Corresponding Author(s) : Amro S. Hanora
Cellular and Molecular Biology,
Vol. 70 No. 8: Issue 8
Abstract
Rift Valley Fever Virus (RVFV) is an arbovirus that circulates among animals and can be transmitted to humans. Mosquitoes are the primary vectors that allow RVFV to spread vertically and horizontally. Egypt was exposed to frequent outbreaks with devastating economic consequences. RVFV has a high incidence of worldwide dissemination and no specific vaccine or therapy. Linear Human Cathelicidin (LL-37), is a natural antimicrobial peptide with antiviral activity against numerous viruses. In addition to immunomodulatory effects, LL-37 directly influences viral encapsulation. This study aimed to evaluate the antiviral activity of LL-37 against RVFV in vitro. The post-entry and pre-incubation of LL-37 within Vero cells were assessed in the absence and presence of RVFV. LL-37 activity was assessed using a TCID50 endpoint test, qRT-PCR, and a western blot. When genomic RVFV was quantified, it resulted in a 48% direct inactivation of the viral envelope and a 36% reduction when the virus was pre-incubated with LL-37 before infection. LL-37 decreased viral infection by 75% and protected Vero cells against RVFV infection by 47% at a 1.25 µg/ml dosage. These findings imply that LL-37 exerts antiviral efficacy against RVFV by restricting virus entrance through direct disruption of the virus envelope and indirectly by triggering an immunological response. The effect of LL-37 is time-dependent. As a result, LL-37 may provide rapid and affordable therapies for RVFV infection in Egypt, both during outbreaks and as a preventive strategy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX