Issue
Copyright (c) 2024 Pufeng Ye, Guifeng Pan, Yuanfeng Li, Aobo Li, Jianbin Zhang, Mingxiu Xin, Zhenjiang Mai
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.The role of remifentanil in regulating mitochondrial autophagy in osteoclasts was investigated based on PINK1/Parkin pathway
Corresponding Author(s) : Zhenjiang Mai
Cellular and Molecular Biology,
Vol. 70 No. 7: Issue 7
Abstract
This study aimed to explore the regulatory effect of remifentanil-mediated mitochondrial autophagy on osteoclast formation and further investigate its mechanism. Macrophage cell line RAW264.7 was taken and induced to differentiate into mature osteoclasts using nuclear factor kB receptor activating factor ligand (RANKL). The cell model was treated with different concentrations of remifentanil or down-regulated expression of mitochondrial autophagy-related gene PINK1. The survival, death and ROS production of osteoclasts were detected by CCK8 kit and flow cytometry, MMP level was detected by JC-1 method, mitochondrial morphology and autophagy were observed by transmission electron microscopy, and mitochondrial autophagy-related protein expression was detected by Western blot. The number of osteoclasts in the remifentanil-treated group was significantly reduced compared to the control group, accompanied by a reduction in reactive oxygen species (ROS) and mitochondrial membrane potential levels (MMP). Further results showed that remifentanil could significantly up-regulate the activity of PINK1/Parkin pathway, promote the occurrence of mitochondrial autophagy, and damaged mitochondria, and inhibit the formation of osteoclasts. Remifentanil successfully inhibited osteoclast formation by regulating mitochondrial autophagy mediated by PINK1/Parkin pathway. The results of this study revealed that remifentanil plays an important role in the physiology and pathology of osteoclasts, which may provide new ideas and strategies for the clinical treatment of remifentanil in tibial fractures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX