Issue
Copyright (c) 2023 Chao Chen, Yuqiong Chen, Mingzhu Xu, Lin Chen, Zhongqi Sun, Junrong Gong, Feili Li, Tingbo Jiang

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Cucurbitacin B protects against myocardial ischemia-reperfusion injury through activating JAK2/STAT3 signaling pathway
Corresponding Author(s) : Yafei Li
Cellular and Molecular Biology,
Vol. 69 No. 11: Issue 11
Abstract
Cucurbitacin B, a tetracyclic triterpenoid compound extracted from various plants, has been proven to exert a vital role in various diseases. However, the effect of cucurbitacin B on myocardial infarction (MI) and ischemia-reperfusion (I/R) injury is still relatively unclear. The main purpose of the present study was to investigate the effect of cucurbitacin B on cell apoptosis and oxidative damage after myocardial I/R injury in vitro and in vivo and elucidate the molecular mechanisms underlying its role. The 56-day-old adult mice and 1-day-old neonatal mice cardiomyocytes were used to construct I/R or oxygen-glucose deprivation/reoxygenation (OGD/R) injury models. The oxidative injury, western blot and TUNEL assay were performed to evaluate cardiomyocyte damage in the present study. In vitro, we confirmed that cucurbitacin B could attenuate LDH release, oxidative stress and cell apoptosis in cardiomyocytes exposed to OGD/R. Besides, we confirmed in an adult I/R mouse model that cucurbitacin B can improve cardiac repair and block cell apoptosis in the acute phase (24 h) post-myocardial I/R injury, as well as promote long-term cardiac function and fiber scar area after 28 days of I/R. Mechanically, we clarify that cucurbitacin B exerts cardiomyocyte protective effects through activating the JAK2/STAT3 signaling pathway. In conclusion, our study elucidates for the first time the protective role of cucurbitacin B in cardiac I/R injury, which provides a novel perspective for better prevention of I/R injury through the JAK2/STAT3 signaling pathway.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX