Issue
Copyright (c) 2023 Shaodong Li, Linhai Wang, Junyan Wang, Birong Liang, Wenbin Gao, Yusheng Huang, Bo Deng, Qing Liu, Zheng Zhou, Lu Zhang, Shaoxiang Xian, Lingjun Wang, Jing Liu, Zhaohui Wang
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Inhibition of AGEs-RAGE-PP2A Axis Alleviates Cognitive Impairment after Chronic Heart Failure
Corresponding Author(s) : Lingjun Wang
Cellular and Molecular Biology,
Vol. 69 No. 5: Issue 5
Abstract
To investigate the effect of the AGEs-RAGE-PP2A axis on cognitive impairment (CI) after chronic heart failure (CHF). Mice were divided into six groups: Sham, TAC, Sham+RAGE-/-, TAC+RAGE-/-, AG, and FTY720 group. AG mice and FTY720 mice were treated with AGEs inhibitor (aminoguanidine, AG) and PP2A activator (FTY720) respectively after TAC surgery. The cardiac function of AG and TAC+RAGE-/- mice was significantly better than that of TAC mice (P<0.05). However, the heart function of FTY720 mice were just improved a part of that. To behavioral function, the escape latency period of the TAC+RAGE-/-, AG and FTY720 mice were significantly shorter (P<0.05), and the times of platform crossings and residence time of them were significantly improved (P<0.05). HE staining and silver staining show the structure of TAC+RAGE-/-, AG and FTY720 mice were more complete. Also, in these three groups, the expression of Aβ and p-tau protein in the brain can be significantly down-regulated (P<0.05) and the PP2A protein expression level was up-regulated (P<0.05). And the expression of hippocampal Bax, Cyt-C, and Caspase-3 of that were all down-regulated (P<0.05), and Bcl-2 was up-regulated (P<0.05). Deficient of AGEs, RAGE and activating PP2A can significantly attenuate the cognitive impairment in CHF mice, and protect the brain structure. This mechanism seems via reducing the expression of Aβ, p-tau, and apoptotic protein.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX