Issue
Knockdown of Angiopoietin-like protein 4 suppresses the development of colorectal cancer
Corresponding Author(s) : Fanghai Han
Cellular and Molecular Biology,
Vol. 66 No. 5: Issue 5
Abstract
Colorectal cancer, is the growth of cancer cells in the part of the colon. Angiopeptin is one of the growth factors in the human body that is particularly effective in the regulatory process. In this research, the regulatory role and its mechanism of Angiopoietin-like protein 4 (ANGPTL4) in colorectal cancer (CRC) metastasis, has been studied. Protein expression of ANGPLT4 was analyzed by immunohistochemistry in tumor samples and adjacent normal specimens of 40 patients with CRC cancer of various phases. A gene knockout test was conducted, two effective siRNA of ANGPTL4, named siRNA1 and siRNA2, were constructed and transfected into two CRC cell lines SW480 and HT-29 to block the expression of ANGPTL4. QRT-PCR and western blotting were used to validate the knockdown efficiency of the mRNA and proteins. Based on the results, the protein expression of ANGPTL4 was increased in human CRC tissues with the development of CRC. Knockdown of ANGPTL4 by siRNA in SW480 and HT-29 cells in vitro inhibited cell proliferation, promoted cell apoptosis, and suppressed the ability of cell migration and invasion. Besides, the sensitivity of CRC cells to Cisplatin was increased in the low ANGPTL4 expression group. ANGPTL4 might be a new potential therapeutic target for patients with CRC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Rodenhizer D. Design and Fabrication of a Rollable Engineered Tissue for Spatially Mapping the Heterogeneous Tumour Microenvironment, University of Toronto (Canada); 2018.
- Gong X, Hou Z, Endsley MP, Gronseth EI, Rarick KR, Jorns JM, Yang Q, Du Z, Yan K, Bordas ML. Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-β2/ANGPTL4 axes. NPJ Precis Oncol. 2019; 3(1): 1-9.
- Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017; 7(5): 1016.
- Luo Q, Wang J, Zhao W, Peng Z, Liu X, Li B, Zhang H, Shan B, Zhang C, Duan C. Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol. 2020; 13(1): 1-15.
- Andonegui-Elguera MA, Alfaro-Mora Y, Cáceres-Gutiérrez R, Caro-Sánchez CHS, Herrera LA, Díaz-Chávez J. An Overview of Vasculogenic Mimicry in Breast Cancer. Front Oncol. 2020; 10.
- Mitra D, Bhattacharyya S, Alam N, Sen S, Mitra S, Mandal S, Vignesh S, Majumder B, Murmu N. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast. Breast Cancer Res Treat. 2020; 179(2): 359-370.
- Kaur V, Singh ASA, Kaur K, Rath G. Targeted Based Drug Delivery System for Colon Cancer. J Drug Deliv and Therapeutics. 2020; 10(1): 111-122.
- Elmasry M. Identification of novel prognostic and predictive biomarkers in colorectal cancer, lmu; 2020.
- Tong G, Zhang G, Liu J, Zheng Z, Chen Y, Niu P, Xu X. Cutoff of 25% for Ki67 expression is a good classification tool for prognosis in colorectal cancer in the AJCC-8 stratification. Oncol Rep. 2020; 43(4): 1187-1198.
- Patel M. The role of the non-canonical NF-κB pathway in colorectal cancer, University of Glasgow; 2020.
- Breininger S, Malcomson F, Afshar S, Turnbull D, Greaves L, Mathers J. Effects of obesity and weight loss on mitochondrial structure and function and implications for colorectal cancer risk. Proc Nut Society. 2019; 78(3): 426-437.
- Fliss-Isakov N, Kariv R, Webb M, Ivancovsky-Wajcman D, Zaslavsky O, Margalit D, Shibolet O, Zelber-Sagi S. A healthy lifestyle pattern has a protective association with colorectal polyps. Eur J Clin Nutr. 2020; 74(2): 328-337.
- Atef N, Alieldin N, Sherif G, Loay I, Mohamed G. Microsatellite Instability and Life Style Factors in Sporadic Colorectal Cancer. Asian Pac J Cancer Prev. 2020; 21(5): 1471-1480.
- Mehta SS, Arroyave WD, Lunn RM, Park Y-MM, Boyd WA, Sandler DP. A prospective analysis of red and processed meat consumption and risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev. 2020; 29(1): 141-150.
- Hur SJ, Yoon Y, Jo C, Jeong JY, Lee KT. Effect of Dietary Red Meat on Colorectal Cancer Risk”A Review. Compr Rev Food Sci Food Saf. 2019; 18(6): 1812-1824.
- Keller D, Windsor A, Cohen R, Chand M. Colorectal cancer in inflammatory bowel disease: review of the evidence. Techniq Coloproctol. 2019; 23(1): 3-13.
- Irrazabal T, Thakur BK, Kang M, Malaise Y, Streutker C, Wong EO, Copeland J, Gryfe R, Guttman DS, Navarre WW. Limiting oxidative DNA damage reduces microbe-induced colitis-associated colorectal cancer. Nat Commun. 2020; 11(1): 1-14.
- Ricciardi R, Clark S, Roberts PL. Diverticular Disease Management. Shackelford's Surgery of the Alimentary Tract, 2 Volume Set: Elsevier; 2019: 1826-1847.
- Park EY, Baek DH, Am Song G, Kim GH, Lee BE. Long-term outcomes of endoscopically resected laterally spreading tumors with a positive histological lateral margin. Surg Endosc. 2019: 1-12.
- van der Stok EP, Spaander MC, Grünhagen DJ, Verhoef C, Kuipers EJ. Surveillance after curative treatment for colorectal cancer. Nat Rev Clin Oncol. 2017; 14(5): 297.
- Imaoka Y, Kuranishi F, Miyazaki T, Yasuda H, Ohno T. Long-lasting complete response status of advanced stage IV gall bladder cancer and colon cancer after combined treatment including autologous formalin-fixed tumor vaccine: two case reports. World J Surg Oncol. 2017; 15(1): 170.
- Viswanath B, Kim S, Lee K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int J Nanomedicine. 2016; 11: 2491.
- Martella A, Willett C, Palta M, Czito B. The Selective Use of Radiation Therapy in Rectal Cancer Patients. Curr Oncol Rep. 2018; 20(6): 43.
- Cheng HP. Role of miRNAs Regulating The EMT/MET Processes In Colorectal Caner-Derived Induced Pluripotent Cancer Cells (CRC-iPCs), UTAR; 2019.
- Dalerba P, Diehn M, Weissman IL, Clarke MF. Stem Cells, Cell Differentiation, and Cancer. Abeloff's Clin Oncol: Elsevier; 2020: 97-107. e105.
- Hayman L, Chaudhry WR, Revin VV, Zhelev N, Bourdon J-C. What is the potential of p53 isoforms as a predictive biomarker in the treatment of cancer? Expert Rev Mol Diagn. 2019; 19(2): 149-159.
- Phng L-K. Endothelial Cell Dynamics during Blood Vessel Morphogenesis. Zebrafish, Medaka, and Other Small Fishes: Springer; 2018: 17-35.
- Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017; 20(4): 409-426.
- Li X, Chang Y, Ding Z, Guo Z, Mehta JL, Wang X. Functions of MicroRNAs in Angiogenesis. Biochemical Basis and Therapeutic Implications of Angiogenesis: Springer; 2017: 133-155.
- Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol. 2018; 233(4): 2949-2965.
- Herkenne S, Ek O, Zamberlan M, Pellattiero A, Chergova M, Chivite I, Novotná E, Rigoni G, Fonseca TB, Samardzic D. Developmental and tumor angiogenesis requires the mitochondria-shaping protein Opa1. Cell Metabolism. 2020.
- Chen Z, Han ZC. STAT3: a critical transcription activator in angiogenesis. Med Res Rev. 2008; 28(2): 185-200.
- Mazzone M, Bergers G. Regulation of blood and lymphatic vessels by immune cells in tumors and metastasis. Annu Rev Physiol. 2019; 81: 535-560.
- Erkinova SA, Sokolova EA, Orlov KY, Kiselev VS, Strelnikov NV, Dubovoy AV, Voronina EN, Filipenko ML. Angiopoietin-Like Proteins 4 (ANGPTL4) Gene Polymorphisms and Risk of Brain Arteriovenous Malformation. J Stroke Cerebrovascular Dis. 2018; 27(4): 908-913.
- Costa RA, Cardoso JC, Power DM. Evolution of the angiopoietin-like gene family in teleosts and their role in skin regeneration. BMC Evol Biol. 2017; 17(1): 14.
- Mazzone M, Bergers G. Regulation of blood and lymphatic vessels by immune cells in tumors and metastasis. Annual review of physiology. 2019; 81: 535-560.
- Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, Swamy SN, Ahn KS, Kumar AP, Tan BK. Potential role of signal transducer and activator of transcription (STAT) 3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta-Rev Cancer. 2013; 1835(1): 46-60.
- Gu Y, Mohammad IS, Liu Z. Overview of the STAT-3 signaling pathway in cancer and the development of specific inhibitors. Oncol Lett. 2020; 19(4): 2585-2594.
- Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE, Spiegelman BM. Peroxisome proliferator-activated receptor γ target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol. 2000; 20(14): 5343-5349.
- Yoshida K, Shimizugawa T, Ono M, Furukawa H. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res. 2002; 43(11): 1770-1772.
- Morelli MB, Chavez C, Santulli G. Angiopoietin-like proteins as therapeutic targets for cardiovascular disease: focus on lipid disorders. Expert Opin Ther Targets. 2020; (Accepted).
- Endo M. The Roles of ANGPTL Families in Cancer Progression. J UOEH. 2019; 41(3): 317-325.
- La Paglia L, Listí¬ A, Caruso S, Amodeo V, Passiglia F, Bazan V, Fanale D. Potential role of ANGPTL4 in the cross talk between metabolism and cancer through PPAR signaling pathway. PPAR Res. 2017; 2017.
- Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, Tan CK, Huang R-L, Sze SK, Tang MBY. Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem. 2010; 285(43): 32999-33009.
- Grootaert C, Van de Wiele T, Verstraete W, Bracke M, Vanhoecke B. Angiopoietin-like protein 4: health effects, modulating agents and structure–function relationships. Expert Rev Proteomic. 2012; 9(2): 181-199.
- Guo L, Li S-Y, Ji F-Y, Zhao Y-F, Zhong Y, Lv X-J, Wu X-L, Qian G-S. Role of Angptl4 in vascular permeability and inflammation. Inflamm Res. 2014; 63(1): 13-22.
- Hou M, Cui J, Liu J, Liu F, Jiang R, Liu K, Wang Y, Yin L, Liu W, Yu B. Angiopoietin-like 4 confers resistance to hypoxia/serum deprivation-induced apoptosis through PI3K/Akt and ERK1/2 signaling pathways in mesenchymal stem cells. PloS one. 2014; 9(1): e85808-e85808.
- Ng KT-P, Xu A, Cheng Q, Guo DY, Lim ZX-H, Sun CK-W, Fung JH-S, Poon RT-P, Fan ST, Lo CM. Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma. Mol Cancer. 2014; 13(1): 196.
- Ziemer LE. The Role of the Obese Microenvironment in Mediating Breast Cancer Progression and Metastasis, The University of Wisconsin-Madison; 2020.
- Li H, Ge C, Zhao F, Yan M, Hu C, Jia D, Tian H, Zhu M, Chen T, Jiang G. Hypoxia"inducible factor 1 alpha–activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule"1/integrin β1 signaling in human hepatocellular carcinoma. Hepatol. 2011; 54(3): 910-919.
- Shen C-J, Liao Y-H, Tsai J-P, Hung L-Y, Chang W-C, Chen B-K. Oleic acid-induced ANGPTL4 facilitates metastasis of human colorectal cancer via up-regulation of NOX4 expression. AACR; 2019.
- Ifon ET, Pang AL, Johnson W, Cashman K, Zimmerman S, Muralidhar S, Chan W-Y, Casey J, Rosenthal LJ. U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3. Cancer cell Int. 2005; 5(1): 19.
- Tan MJ, Teo Z, Sng MK, Zhu P, Tan NS. Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res. 2012; 10(6): 677-688.
- Hu J, Jham BC, Ma T, Friedman ER, Ferreira L, Wright JM, Accurso B, Allen CM, Basile JR, Montaner S. Angiopoietin-like 4: a novel molecular hallmark in oral Kaposi's sarcoma. Oral Oncol. 2011; 47(5): 371-375.
- Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, Mekid H, Mir LM, Opolon P, Corvol P. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci USA. 2006; 103(49): 18721-18726.
- Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer. 2006; 118(2): 257-262.
- Zandbergen F, Van Dijk S, Müller M, Kersten S. Fasting-induced adipose factor/angiopoietin–like protein 4: a potential target for dyslipidemia? Future Lipidol. 2006; 1(2): 227-236.
- Kim S-H, Park Y-Y, Kim S-W, Lee J-S, Wang D, DuBois RN. ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res 2011; 71(22): 7010-7020.
- Li X, Chen T, Shi Q, Li J, Cai S, Zhou P, Zhong Y, Yao L. Angiopoietin-like 4 enhances metastasis and inhibits apoptosis via inducing bone morphogenetic protein 7 in colorectal cancer cells. Biochem Biophys Res Commun. 2015; 467(1): 128-134.
- Brian M. Structure and Antioxidant Activity of Extracellular Polysaccharides from Antarctic Marine Filamentous Fungi. Ccamlr Sci 2018; 25(1): 49-55.
- Cooper R, Newman P, Herachwati N. RAPD Molecular Markers to Analyze the DNA Variation of the Three Bruguiera Species on Kemujan Island. Ccamlr Sci 2018; 25(3): 209-214.
- McCune J, Yuuka F. Lymph Node Pleomorphic B-Cell Lymphoma at Cow Tumor Development. Ccamlr Sci 2018; 25(4): 273-278.
- Shino H, Flinn C, Miyo F. Gamma-glutamylcysteine Synthetase Gene Homolog (gshA) in Glutathione Homeostasis in Aspergillus Oryzae. Ccamlr Sci 2018; 25(3): 157-162.
- Wu N. Genetic Diversity of Mitochondrial DNA in Marine Animals under Health Evaluation. Ccamlr Sci 2018; 25(3): 183-189.
- Sun Y, Long J, Zhou Y. Angiopoietin-like 4 promotes melanoma cell invasion and survival through aldolase A. Oncol Lett. 2014; 8(1): 211-217.
- Li W, Jia MX, Wang JH, Lu JL, Deng J, Tang JX, Liu C. Association of MMP9-1562C/T and MMP13-77A/G polymorphisms with non-small cell lung cancer in southern Chinese population. Biomol. 2019; 9(3): 107.
- Bordbar M, Darvishzadeh R, Pazhouhandeh M, Kahrizi, D. An overview of genome editing methods based on endonucleases. Modern Genetics J 2020; 15(2): 75-92.
- Akbarabadi A, Ismaili A, Kahrizi D, Firouzabadi FN. Validation of expression stability of reference genes in response to herbicide stress in wild oat (Avena ludoviciana). Cell Mol Biol 2018; 64(4). 113-118.
- Ghorbani T, Kahrizi D, Saeidi M, Arji I. Effect of sucrose concentrations on Stevia rebaudiana Bertoni tissue culture and gene expression. Cell Mol Biol, 63(11): 32-36.
- Kahrizi D, Ghari SM, Ghaheri M, Fallah F, Ghorbani T, Beheshti AA, Kazemi E, Ansarypour Z. Effect of KH2PO4 on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions. Cell Mol Biol, 63(7): 107-111.
- Fallah F, Nokhasi F, Ghaheri M, Kahrizi D, Beheshti Ale AA, Ghorbani T, Kazemi E, Ansarypour Z. Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cell Mol Biol 2017; 63(7): 102-106.
- Beder LB, Gunduz M, Hotomi M, Fujihara K, Shimada J, Tamura S, Gunduz E, Fukushima K, Yaykasli K, Grenman R. T-lymphocyte maturation"associated protein gene as a candidate metastasis suppressor for head and neck squamous cell carcinomas. Cancer Sci. 2009; 100(5): 873-880.
- Katase N, Gunduz M, Beder LB, Gunduz E, Sheikh Ali MA, Tamamura R, Yaykasli KO, Yamanaka N, Shimizu K, Nagatsuka H. Frequent allelic loss of Dkk-1 locus (10q11. 2) is related with low distant metastasis and better prognosis in head and neck squamous cell carcinomas. Cancer Invest. 2010; 28(1): 103-110.
- Yang M, Abdalrahman H, Sonia U, Mohammed A, Vestine U, Wang M, Ebadi AG, Toughani M. The application of DNA molecular markers in the study of Codonopsis species genetic variation, a review. Cell Mol Biol 2020; 2: 23-30.
References
Rodenhizer D. Design and Fabrication of a Rollable Engineered Tissue for Spatially Mapping the Heterogeneous Tumour Microenvironment, University of Toronto (Canada); 2018.
Gong X, Hou Z, Endsley MP, Gronseth EI, Rarick KR, Jorns JM, Yang Q, Du Z, Yan K, Bordas ML. Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-β2/ANGPTL4 axes. NPJ Precis Oncol. 2019; 3(1): 1-9.
Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017; 7(5): 1016.
Luo Q, Wang J, Zhao W, Peng Z, Liu X, Li B, Zhang H, Shan B, Zhang C, Duan C. Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol. 2020; 13(1): 1-15.
Andonegui-Elguera MA, Alfaro-Mora Y, Cáceres-Gutiérrez R, Caro-Sánchez CHS, Herrera LA, Díaz-Chávez J. An Overview of Vasculogenic Mimicry in Breast Cancer. Front Oncol. 2020; 10.
Mitra D, Bhattacharyya S, Alam N, Sen S, Mitra S, Mandal S, Vignesh S, Majumder B, Murmu N. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast. Breast Cancer Res Treat. 2020; 179(2): 359-370.
Kaur V, Singh ASA, Kaur K, Rath G. Targeted Based Drug Delivery System for Colon Cancer. J Drug Deliv and Therapeutics. 2020; 10(1): 111-122.
Elmasry M. Identification of novel prognostic and predictive biomarkers in colorectal cancer, lmu; 2020.
Tong G, Zhang G, Liu J, Zheng Z, Chen Y, Niu P, Xu X. Cutoff of 25% for Ki67 expression is a good classification tool for prognosis in colorectal cancer in the AJCC-8 stratification. Oncol Rep. 2020; 43(4): 1187-1198.
Patel M. The role of the non-canonical NF-κB pathway in colorectal cancer, University of Glasgow; 2020.
Breininger S, Malcomson F, Afshar S, Turnbull D, Greaves L, Mathers J. Effects of obesity and weight loss on mitochondrial structure and function and implications for colorectal cancer risk. Proc Nut Society. 2019; 78(3): 426-437.
Fliss-Isakov N, Kariv R, Webb M, Ivancovsky-Wajcman D, Zaslavsky O, Margalit D, Shibolet O, Zelber-Sagi S. A healthy lifestyle pattern has a protective association with colorectal polyps. Eur J Clin Nutr. 2020; 74(2): 328-337.
Atef N, Alieldin N, Sherif G, Loay I, Mohamed G. Microsatellite Instability and Life Style Factors in Sporadic Colorectal Cancer. Asian Pac J Cancer Prev. 2020; 21(5): 1471-1480.
Mehta SS, Arroyave WD, Lunn RM, Park Y-MM, Boyd WA, Sandler DP. A prospective analysis of red and processed meat consumption and risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev. 2020; 29(1): 141-150.
Hur SJ, Yoon Y, Jo C, Jeong JY, Lee KT. Effect of Dietary Red Meat on Colorectal Cancer Risk”A Review. Compr Rev Food Sci Food Saf. 2019; 18(6): 1812-1824.
Keller D, Windsor A, Cohen R, Chand M. Colorectal cancer in inflammatory bowel disease: review of the evidence. Techniq Coloproctol. 2019; 23(1): 3-13.
Irrazabal T, Thakur BK, Kang M, Malaise Y, Streutker C, Wong EO, Copeland J, Gryfe R, Guttman DS, Navarre WW. Limiting oxidative DNA damage reduces microbe-induced colitis-associated colorectal cancer. Nat Commun. 2020; 11(1): 1-14.
Ricciardi R, Clark S, Roberts PL. Diverticular Disease Management. Shackelford's Surgery of the Alimentary Tract, 2 Volume Set: Elsevier; 2019: 1826-1847.
Park EY, Baek DH, Am Song G, Kim GH, Lee BE. Long-term outcomes of endoscopically resected laterally spreading tumors with a positive histological lateral margin. Surg Endosc. 2019: 1-12.
van der Stok EP, Spaander MC, Grünhagen DJ, Verhoef C, Kuipers EJ. Surveillance after curative treatment for colorectal cancer. Nat Rev Clin Oncol. 2017; 14(5): 297.
Imaoka Y, Kuranishi F, Miyazaki T, Yasuda H, Ohno T. Long-lasting complete response status of advanced stage IV gall bladder cancer and colon cancer after combined treatment including autologous formalin-fixed tumor vaccine: two case reports. World J Surg Oncol. 2017; 15(1): 170.
Viswanath B, Kim S, Lee K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int J Nanomedicine. 2016; 11: 2491.
Martella A, Willett C, Palta M, Czito B. The Selective Use of Radiation Therapy in Rectal Cancer Patients. Curr Oncol Rep. 2018; 20(6): 43.
Cheng HP. Role of miRNAs Regulating The EMT/MET Processes In Colorectal Caner-Derived Induced Pluripotent Cancer Cells (CRC-iPCs), UTAR; 2019.
Dalerba P, Diehn M, Weissman IL, Clarke MF. Stem Cells, Cell Differentiation, and Cancer. Abeloff's Clin Oncol: Elsevier; 2020: 97-107. e105.
Hayman L, Chaudhry WR, Revin VV, Zhelev N, Bourdon J-C. What is the potential of p53 isoforms as a predictive biomarker in the treatment of cancer? Expert Rev Mol Diagn. 2019; 19(2): 149-159.
Phng L-K. Endothelial Cell Dynamics during Blood Vessel Morphogenesis. Zebrafish, Medaka, and Other Small Fishes: Springer; 2018: 17-35.
Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017; 20(4): 409-426.
Li X, Chang Y, Ding Z, Guo Z, Mehta JL, Wang X. Functions of MicroRNAs in Angiogenesis. Biochemical Basis and Therapeutic Implications of Angiogenesis: Springer; 2017: 133-155.
Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol. 2018; 233(4): 2949-2965.
Herkenne S, Ek O, Zamberlan M, Pellattiero A, Chergova M, Chivite I, Novotná E, Rigoni G, Fonseca TB, Samardzic D. Developmental and tumor angiogenesis requires the mitochondria-shaping protein Opa1. Cell Metabolism. 2020.
Chen Z, Han ZC. STAT3: a critical transcription activator in angiogenesis. Med Res Rev. 2008; 28(2): 185-200.
Mazzone M, Bergers G. Regulation of blood and lymphatic vessels by immune cells in tumors and metastasis. Annu Rev Physiol. 2019; 81: 535-560.
Erkinova SA, Sokolova EA, Orlov KY, Kiselev VS, Strelnikov NV, Dubovoy AV, Voronina EN, Filipenko ML. Angiopoietin-Like Proteins 4 (ANGPTL4) Gene Polymorphisms and Risk of Brain Arteriovenous Malformation. J Stroke Cerebrovascular Dis. 2018; 27(4): 908-913.
Costa RA, Cardoso JC, Power DM. Evolution of the angiopoietin-like gene family in teleosts and their role in skin regeneration. BMC Evol Biol. 2017; 17(1): 14.
Mazzone M, Bergers G. Regulation of blood and lymphatic vessels by immune cells in tumors and metastasis. Annual review of physiology. 2019; 81: 535-560.
Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, Swamy SN, Ahn KS, Kumar AP, Tan BK. Potential role of signal transducer and activator of transcription (STAT) 3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta-Rev Cancer. 2013; 1835(1): 46-60.
Gu Y, Mohammad IS, Liu Z. Overview of the STAT-3 signaling pathway in cancer and the development of specific inhibitors. Oncol Lett. 2020; 19(4): 2585-2594.
Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE, Spiegelman BM. Peroxisome proliferator-activated receptor γ target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol. 2000; 20(14): 5343-5349.
Yoshida K, Shimizugawa T, Ono M, Furukawa H. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res. 2002; 43(11): 1770-1772.
Morelli MB, Chavez C, Santulli G. Angiopoietin-like proteins as therapeutic targets for cardiovascular disease: focus on lipid disorders. Expert Opin Ther Targets. 2020; (Accepted).
Endo M. The Roles of ANGPTL Families in Cancer Progression. J UOEH. 2019; 41(3): 317-325.
La Paglia L, Listí¬ A, Caruso S, Amodeo V, Passiglia F, Bazan V, Fanale D. Potential role of ANGPTL4 in the cross talk between metabolism and cancer through PPAR signaling pathway. PPAR Res. 2017; 2017.
Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, Tan CK, Huang R-L, Sze SK, Tang MBY. Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem. 2010; 285(43): 32999-33009.
Grootaert C, Van de Wiele T, Verstraete W, Bracke M, Vanhoecke B. Angiopoietin-like protein 4: health effects, modulating agents and structure–function relationships. Expert Rev Proteomic. 2012; 9(2): 181-199.
Guo L, Li S-Y, Ji F-Y, Zhao Y-F, Zhong Y, Lv X-J, Wu X-L, Qian G-S. Role of Angptl4 in vascular permeability and inflammation. Inflamm Res. 2014; 63(1): 13-22.
Hou M, Cui J, Liu J, Liu F, Jiang R, Liu K, Wang Y, Yin L, Liu W, Yu B. Angiopoietin-like 4 confers resistance to hypoxia/serum deprivation-induced apoptosis through PI3K/Akt and ERK1/2 signaling pathways in mesenchymal stem cells. PloS one. 2014; 9(1): e85808-e85808.
Ng KT-P, Xu A, Cheng Q, Guo DY, Lim ZX-H, Sun CK-W, Fung JH-S, Poon RT-P, Fan ST, Lo CM. Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma. Mol Cancer. 2014; 13(1): 196.
Ziemer LE. The Role of the Obese Microenvironment in Mediating Breast Cancer Progression and Metastasis, The University of Wisconsin-Madison; 2020.
Li H, Ge C, Zhao F, Yan M, Hu C, Jia D, Tian H, Zhu M, Chen T, Jiang G. Hypoxia"inducible factor 1 alpha–activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule"1/integrin β1 signaling in human hepatocellular carcinoma. Hepatol. 2011; 54(3): 910-919.
Shen C-J, Liao Y-H, Tsai J-P, Hung L-Y, Chang W-C, Chen B-K. Oleic acid-induced ANGPTL4 facilitates metastasis of human colorectal cancer via up-regulation of NOX4 expression. AACR; 2019.
Ifon ET, Pang AL, Johnson W, Cashman K, Zimmerman S, Muralidhar S, Chan W-Y, Casey J, Rosenthal LJ. U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3. Cancer cell Int. 2005; 5(1): 19.
Tan MJ, Teo Z, Sng MK, Zhu P, Tan NS. Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res. 2012; 10(6): 677-688.
Hu J, Jham BC, Ma T, Friedman ER, Ferreira L, Wright JM, Accurso B, Allen CM, Basile JR, Montaner S. Angiopoietin-like 4: a novel molecular hallmark in oral Kaposi's sarcoma. Oral Oncol. 2011; 47(5): 371-375.
Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, Mekid H, Mir LM, Opolon P, Corvol P. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci USA. 2006; 103(49): 18721-18726.
Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer. 2006; 118(2): 257-262.
Zandbergen F, Van Dijk S, Müller M, Kersten S. Fasting-induced adipose factor/angiopoietin–like protein 4: a potential target for dyslipidemia? Future Lipidol. 2006; 1(2): 227-236.
Kim S-H, Park Y-Y, Kim S-W, Lee J-S, Wang D, DuBois RN. ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res 2011; 71(22): 7010-7020.
Li X, Chen T, Shi Q, Li J, Cai S, Zhou P, Zhong Y, Yao L. Angiopoietin-like 4 enhances metastasis and inhibits apoptosis via inducing bone morphogenetic protein 7 in colorectal cancer cells. Biochem Biophys Res Commun. 2015; 467(1): 128-134.
Brian M. Structure and Antioxidant Activity of Extracellular Polysaccharides from Antarctic Marine Filamentous Fungi. Ccamlr Sci 2018; 25(1): 49-55.
Cooper R, Newman P, Herachwati N. RAPD Molecular Markers to Analyze the DNA Variation of the Three Bruguiera Species on Kemujan Island. Ccamlr Sci 2018; 25(3): 209-214.
McCune J, Yuuka F. Lymph Node Pleomorphic B-Cell Lymphoma at Cow Tumor Development. Ccamlr Sci 2018; 25(4): 273-278.
Shino H, Flinn C, Miyo F. Gamma-glutamylcysteine Synthetase Gene Homolog (gshA) in Glutathione Homeostasis in Aspergillus Oryzae. Ccamlr Sci 2018; 25(3): 157-162.
Wu N. Genetic Diversity of Mitochondrial DNA in Marine Animals under Health Evaluation. Ccamlr Sci 2018; 25(3): 183-189.
Sun Y, Long J, Zhou Y. Angiopoietin-like 4 promotes melanoma cell invasion and survival through aldolase A. Oncol Lett. 2014; 8(1): 211-217.
Li W, Jia MX, Wang JH, Lu JL, Deng J, Tang JX, Liu C. Association of MMP9-1562C/T and MMP13-77A/G polymorphisms with non-small cell lung cancer in southern Chinese population. Biomol. 2019; 9(3): 107.
Bordbar M, Darvishzadeh R, Pazhouhandeh M, Kahrizi, D. An overview of genome editing methods based on endonucleases. Modern Genetics J 2020; 15(2): 75-92.
Akbarabadi A, Ismaili A, Kahrizi D, Firouzabadi FN. Validation of expression stability of reference genes in response to herbicide stress in wild oat (Avena ludoviciana). Cell Mol Biol 2018; 64(4). 113-118.
Ghorbani T, Kahrizi D, Saeidi M, Arji I. Effect of sucrose concentrations on Stevia rebaudiana Bertoni tissue culture and gene expression. Cell Mol Biol, 63(11): 32-36.
Kahrizi D, Ghari SM, Ghaheri M, Fallah F, Ghorbani T, Beheshti AA, Kazemi E, Ansarypour Z. Effect of KH2PO4 on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions. Cell Mol Biol, 63(7): 107-111.
Fallah F, Nokhasi F, Ghaheri M, Kahrizi D, Beheshti Ale AA, Ghorbani T, Kazemi E, Ansarypour Z. Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cell Mol Biol 2017; 63(7): 102-106.
Beder LB, Gunduz M, Hotomi M, Fujihara K, Shimada J, Tamura S, Gunduz E, Fukushima K, Yaykasli K, Grenman R. T-lymphocyte maturation"associated protein gene as a candidate metastasis suppressor for head and neck squamous cell carcinomas. Cancer Sci. 2009; 100(5): 873-880.
Katase N, Gunduz M, Beder LB, Gunduz E, Sheikh Ali MA, Tamamura R, Yaykasli KO, Yamanaka N, Shimizu K, Nagatsuka H. Frequent allelic loss of Dkk-1 locus (10q11. 2) is related with low distant metastasis and better prognosis in head and neck squamous cell carcinomas. Cancer Invest. 2010; 28(1): 103-110.
Yang M, Abdalrahman H, Sonia U, Mohammed A, Vestine U, Wang M, Ebadi AG, Toughani M. The application of DNA molecular markers in the study of Codonopsis species genetic variation, a review. Cell Mol Biol 2020; 2: 23-30.