Issue
Ameliorative effect of polydatin on hyperglycemia and renal injury in streptozotocin-induced diabetic rats
Corresponding Author(s) : Jiangyi Yu
Cellular and Molecular Biology,
Vol. 65 No. 7: Issue 7
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Gao HX, Regier EE, Close KL. International Diabetes Federation World Diabetes Congress 2015. J Diabetes 2016; 8: 300-304.
- Han SH, Susztak K. The hyperglycemic and hyperinsulinemic combo gives you diabetic kidney disease immediately. Focus on "Combined acute hyperglycemic and hyperinsulinemic clamp induced profibrotic and proinflammatory responses in the kidney". Am J Phys 2014; 306: 198-199.
- Xue R, Gui D, Zheng L, Zhai R, Wang F, Wang N. Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective. J Diabetes Res 2017; 2017: 1839809.
- Wright EM. Renal Na+-glucose cotransporters. Am J Physiol-Renal 2001; 280: 10-18.
- Jurczak MJ, Lee H-Y, Birkenfeld AL. SGLT2 deletion improves glucose homeostasis and preserves pancreatic β-cell function. Diabetes 2011; 60: 890-898.
- Chao EC, Henry RR. SGLT2 inhibition”a novel strategy for diabetes treatment. Nat Rev Drug Discov 2010; 9: 551-559.
- Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91: 733-794.
- Martín MG, Turk E, Lostao MP, Kerner C, Wright EM. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet 1996; 12: 216-220.
- Zambrowicz B, Freiman J, Brown PM. LX4211, a Dual SGLT1/SGLT2 Inhibitor, Improved Glycemic Control in Patients With Type 2 Diabetes in a Randomized, Placebo-Controlled Trial. Clin Pharm Ther 2012; 92: 158-169.
- Breyer MD, Böttinger E, Brosius FC 3rd, Coffman TM, Harris RC, Heilig CW, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol 2005; 16: 27-45.
- Calderhead DM, Kitagawa K, Tanner LI, Holman GD, Lienhard GE. Insulin regulation of the two glucose transporters in 3T3-L1 adipocytes. J Biol Chem 1990; 265: 13800-13808.
- Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev 2017; 33: 2.
- Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 2015; 34: 785-796.
- List JF, Whaley JM. Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans. Kidney Int 2011; 79: 20-27.
- da Silva PN, da Conceicao RA, Maia RDC, de Castro Barbosa ML. Sodium-glucose cotransporter 2 (SGLT-2) inhibitors: a new antidiabetic drug class. Medchemcomm 2018; 9: 1273-1281.
- Li Z, Xu X, Deng L. Design, synthesis and biological evaluation of nitric oxide releasing derivatives of dapagliflozin as potential anti-diabetic and anti-thrombotic agents. Bioorgan Med Chem 2018; 26: 3947-3952.
- Jesus AR, Vila-Vicosa D, Machuqueiro M, Marques AP, Dore TM, Rauter AP. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation. J Med Chem 2017; 60: 568-579.
- Li Y, Shi Z, Chen L, Zheng S, Li S, Xu B, et al. Discovery of a Potent, Selective Renal Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor (HSK0935) for the Treatment of Type 2 Diabetes. J Med Chem 2017; 60: 4173-4184.
- van den Meiracker AH, Baggen RG, Pauli S, Lindemans A, Vulto AG, Poldermans D, et al. Spironolactone in type 2 diabetic nephropathy: Effects on proteinuria, blood pressure and renal function. J Hypertens 2006; 24: 2285-2292.
- Ola MS, Nawaz MI, Siddiquei MM, Al-Amro S, Abu El-Asrar AM. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complications 2015; 74: 145-147.
References
Gao HX, Regier EE, Close KL. International Diabetes Federation World Diabetes Congress 2015. J Diabetes 2016; 8: 300-304.
Han SH, Susztak K. The hyperglycemic and hyperinsulinemic combo gives you diabetic kidney disease immediately. Focus on "Combined acute hyperglycemic and hyperinsulinemic clamp induced profibrotic and proinflammatory responses in the kidney". Am J Phys 2014; 306: 198-199.
Xue R, Gui D, Zheng L, Zhai R, Wang F, Wang N. Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective. J Diabetes Res 2017; 2017: 1839809.
Wright EM. Renal Na+-glucose cotransporters. Am J Physiol-Renal 2001; 280: 10-18.
Jurczak MJ, Lee H-Y, Birkenfeld AL. SGLT2 deletion improves glucose homeostasis and preserves pancreatic β-cell function. Diabetes 2011; 60: 890-898.
Chao EC, Henry RR. SGLT2 inhibition”a novel strategy for diabetes treatment. Nat Rev Drug Discov 2010; 9: 551-559.
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91: 733-794.
Martín MG, Turk E, Lostao MP, Kerner C, Wright EM. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet 1996; 12: 216-220.
Zambrowicz B, Freiman J, Brown PM. LX4211, a Dual SGLT1/SGLT2 Inhibitor, Improved Glycemic Control in Patients With Type 2 Diabetes in a Randomized, Placebo-Controlled Trial. Clin Pharm Ther 2012; 92: 158-169.
Breyer MD, Böttinger E, Brosius FC 3rd, Coffman TM, Harris RC, Heilig CW, et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol 2005; 16: 27-45.
Calderhead DM, Kitagawa K, Tanner LI, Holman GD, Lienhard GE. Insulin regulation of the two glucose transporters in 3T3-L1 adipocytes. J Biol Chem 1990; 265: 13800-13808.
Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev 2017; 33: 2.
Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 2015; 34: 785-796.
List JF, Whaley JM. Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans. Kidney Int 2011; 79: 20-27.
da Silva PN, da Conceicao RA, Maia RDC, de Castro Barbosa ML. Sodium-glucose cotransporter 2 (SGLT-2) inhibitors: a new antidiabetic drug class. Medchemcomm 2018; 9: 1273-1281.
Li Z, Xu X, Deng L. Design, synthesis and biological evaluation of nitric oxide releasing derivatives of dapagliflozin as potential anti-diabetic and anti-thrombotic agents. Bioorgan Med Chem 2018; 26: 3947-3952.
Jesus AR, Vila-Vicosa D, Machuqueiro M, Marques AP, Dore TM, Rauter AP. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation. J Med Chem 2017; 60: 568-579.
Li Y, Shi Z, Chen L, Zheng S, Li S, Xu B, et al. Discovery of a Potent, Selective Renal Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor (HSK0935) for the Treatment of Type 2 Diabetes. J Med Chem 2017; 60: 4173-4184.
van den Meiracker AH, Baggen RG, Pauli S, Lindemans A, Vulto AG, Poldermans D, et al. Spironolactone in type 2 diabetic nephropathy: Effects on proteinuria, blood pressure and renal function. J Hypertens 2006; 24: 2285-2292.
Ola MS, Nawaz MI, Siddiquei MM, Al-Amro S, Abu El-Asrar AM. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complications 2015; 74: 145-147.