Issue
The effect of Hordeum vulgare on the monoaminergic system modulating neural-thyroid dysfunction in hypothyroid female rats
Corresponding Author(s) : Lobna F. Wahman
Cellular and Molecular Biology,
Vol. 65 No. 4: Issue 4
Abstract
Thyroid hormones regulate the development and maturation of the brain by maintaining levels of neurotransmitters and their related metabolites. The present work emphasizes the neural dysfunction in the brain caused by hypothyroidism and the potential role of Hordeum vulgare (water soluble barley, (B)) in ameliorating these effects. The study was conducted on euothyroid and hypothyroid adult female rats. The induction of hypothyroidism was conducted by oral-administration of neo-mercazole (5.0 mg.kg-1) daily for thirty days prior the study and terminated at the end of the study. The groups were assigned as; euthyroid (EU) and hypothyroid (H) groups and other two groups were treated with 100 mg.kg-1 water soluble barley; daily for one month and assigned as (EU+B) and (H+B) groups. Compared with EU and EU+B groups, a reduction in fT4, and ERK1/2 levels and elevation in TSH in brain tissue, Moreover, a significant elevation in 8-OH deoxyguanosine and caspase-3 levels, confirmed with increase percentage DNA-damage in the brain and thyroid tissues in hypothyroid control rats. Furthermore, a significant decrease in all monoamines levels in different brain areas and downregulation of dopamine and 5-hydroxytreptamin receptors transcription, with a significant increase in excitatory amino acids and no significant change in the levels inhibitory amino acids were recorded in control hypothyroid group. Treatment of hypothyroid group with Hordeum vulgare improved the above-mentioned adverse impact by ameliorating the thyroid hormone levels with depleting the DNA-degradation and elaborating the levels of neurotransmitters with related receptors and amino acids in brain areas. Water soluble Hordeum vulgare as a phytonutrient, is safe and efficient agent in ameliorating the neural dysfunction resulting from hypothyroidism status in adult female rats.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wu, G. Tan, X. Dong, Z. Zhu, W. Li, Z. Lou, Y. Chai, Metabolic Profiling Provides a System Understanding of Hypothyroidism in Rats and Its Application, PLoS One. 8 (2013).
- L.D.K.E. Premawardhana, Management of thyroid disorders., Postgrad. Med. J. 82 (2006) 552–8.
- Y.J. Chang, C.M. Hwu, C.C. Yeh, P.S. Wang, S.W. Wang, Effects of subacute hypothyroidism on metabolism and growth-related molecules, Molecules. 19 (2014) 11178–11195. doi:10.3390/molecules190811178.
- R. Goel, R. Raju, A Signaling Network of Thyroid-Stimulating Hormone, J. Proteomics Bioinform. 04 (2011) 238–241. doi:10.4172/jpb.1000195.
- J. Bernal, Thyroid hormone receptors in brain development, 3 (2007) 249–259. doi:10.1038/ncpendmet0424.
- A.S. Evers, Paracrine interactions of thyroid hormones and thyroid stimulation hormone in the female reproductive tract have an impact on female fertility, 3 (2012) 1–8. doi:10.3389/fendo.2012.00050.
- E. Tousson, W. Ibrahim, N. Arafa, M. a Akela, Monoamine concentrations changes in the PTU-induced hypothyroid rat brain and the ameliorating role of folic acid., Hum. Exp. Toxicol. 31 (2012) 282–9. doi:10.1177/0960327111405863.
- C. Cortés, E. Eugenin, E. Aliaga, L.J. Carreño, S.M. Bueno, P. a Gonzalez, S. Gayol, D. Naranjo, V. Noches, M.P. Marassi, D. Rosenthal, C. Jadue, P. Ibarra, C. Keitel, N. Wohllk, F. Court, A.M. Kalergis, C. a Riedel, Hypothyroidism in the adult rat causes incremental changes in brain-derived neurotrophic factor, neuronal and astrocyte apoptosis, gliosis, and deterioration of postsynaptic density., Thyroid. 22 (2012) 951–63. doi:10.1089/thy.2010.0400.
- M.H. Rahman, M.Y. Ali, The Relationships between Thyroid Hormones and the Brain Serotonin (5-Ht) System and Mood: Of Synergy and Significance in the Adult Brain- A Review., Faridpur Med. Coll. J. 9 (2015) 98–101.
- M.F. Bauer, S. Hofmann, W. Neupert, Import of mitochondrial proteins., Int. Rev. Neurobiol. 53 (2002) 57–90.
- J. Dong, W. Liu, Y. Wang, Y. Hou, Q. Xi, J. Chen, Developmental iodine deficiency resulting in hypothyroidism reduces hippocampal ERK1/2 and CREB in lactational and adolescent rats., BMC Neurosci. 10 (2009) 149. doi:10.1186/1471-2202-10-149.
- N. Gangopadhyay, M.B. Hossain, D.K. Rai, N.P. Brunton, A review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies, Molecules. 20 (2015) 10884–10909. doi:10.3390/molecules200610884.
- M.K.E. Youssef, F.A.E. El-fishawy, E.A.E. Ramadan, Nutritional Assessment of Barley , Talbina and Their Germinated Products, 3 (2013) 56–65.
- Y. Zhu, T. Li, X. Fu, A.M. Abbasi, B. Zheng, R.H. Liu, Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.), J. Funct. Foods. 19 (2015) 439–450. doi:10.1016/j.jff.2015.09.053.
- E. Idehen, Y. Tang, S. Sang, Bioactive phytochemicals in barley, J. Food Drug Anal. 25 (2017) 148–161. doi:10.1016/j.jfda.2016.08.002.
- A.M. El-Bakry, A.W. El-Gareib, R.G. Ahmed, Comparative study of the effects of experimentally induced hypothyroidism and hyperthyroidism in some brain regions in albino rats., Int. J. Dev. Neurosci. 28 (2010) 371–389.
- A.E. Bawazir, Investigations on the Chronic Effect of Talbina (Barly Water) on Hormone (Cortisol and Testosterone), Reproductive System and Some Neurotransmitter, Am-Euras J Sci Res. 5 (2010) 134–142.
- Marwa M Abd-Rabo; Lobna F Wahman; Magda HM Yousef, potential-impact-of-talbina-on-pituitaryadrenalgonadal-disorders-in-hypothyroid-adult-female-rats, Der Pharm. Lett. 10 (2018) 91–102.
- L.H. Bailey, A concise dictionary of plants cultivated in the United States and Canada., Macmillan,New York, USA. (1976) Pp-1290.
- S.W. Karmarkar, K.M. Bottum, S.A. Tischkau, Considerations for the use of anesthetics in neurotoxicity studies., Comp. Med. 60 (2010) 256–62.
- P. Pagel, J. Blome, H.U. Wolf, High-performance liquid chromatographic separation and measurement of various biogenic compounds possibly involved in the pathomechanism of Parkinson's disease, J. Chromatogr. B Biomed. Sci. Appl. 746 (2000) 297–304. doi:10.1016/S0378-4347(00)00348-0.
- R.L. Heinrikson, S.C. Meredith, Amino acid analysis by reverse-phase high-performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate, Anal. Biochem. 136 (1984) 65–74. doi:10.1016/0003-2697(84)90307-5.
- N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell Res. 175 (1988) 184–191.
- P. R.T., P. MW, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res. May 1;29(9)E45. (n.d.).
- M.M Abd-Rabo, L.F. Wahman, M.H. Yousef, Potential Impact of Talbina on Pituitary-Adrenal-Gonadal Disorders in Hypothyroid Adult Female Rats, Der Pharm. Lett. 10 (2018) 91–102.
- E.K. Wirth, U. Schweizer, J. Köhrle, Transport of thyroid hormone in brain, Front. Endocrinol. (Lausanne). 5 (2014). doi:10.3389/fendo.2014.00098.
- R.P. Singh, A. Singh, H.V. Sirohi, A.K. Singh, P. Kaur, S. Sharma, T.P. Singh, Dual binding mode of antithyroid drug methimazole to mammalian heme peroxidases - structural determination of the lactoperoxidase-methimazole complex at 1.97 í… resolution., FEBS Open Bio. 6 (2016) 640–50. doi:10.1002/2211-5463.12051.
- K. Dahiya, M. Verma, R. Dhankhar, V.S. Ghalaut, P.S. Ghalaut, A. Sachdeva, I. Malik, R. Kumar, Thyroid profile and iron metabolism: Mutual relationship in hypothyroidism, Biomed. Res. 27 (2016) 1212–1215.
- E. Gokdeniz, C. Demir, I. Dilek, The effects of iron deficiency anemia on the thyroid functions, J. Clin. Exp. Investig. 1 (2010) 156–160.
- E.C. Muñoz, J.L. Rosado, P. López, H.C. Furr, L.H. Allen, Iron and zinc supplementation improves indicators of vitamin A status of Mexican preschoolers 1 , 2, Am. J. Clin. Nutr. 71 (2000) 789–94.
- M.M. Badrasawi, S. Shahar, Z.A. Manaf, H. Haron, Effect of Talbinah food consumption on depressive symptoms among elderly individuals in long term care facilities, randomized clinical trial, Clin. Interv. Aging. 8 (2013) 279–285. doi:10.2147/CIA.S37586.
- A. Mancini, C. Di Segni, S. Raimondo, G. Olivieri, A. Silvestrini, E. Meucci, D. Currò, Thyroid Hormones, Oxidative Stress, and Inflammation, Mediators Inflamm. 2016 (2016). doi:10.1155/2016/6757154.
- M. Hosseini, S.S. Dastghaib, H. Rafatpanah, M.A.-R. Hadjzadeh, H. Nahrevanian, I. Farrokhi, Nitric oxide contributes to learning and memory deficits observed in hypothyroid rats during neonatal and juvenile growth, Clinics. 65 (2010) 1175–1181. doi:10.1590/S1807-59322010001100021.
- T.S. Kumaravel, B. Vilhar, S.P. Faux, A.N. Jha, Comet Assay measurements: A perspective, Cell Biol. Toxicol. 25 (2009) 53–64. doi:10.1007/s10565-007-9043-9.
- Y.T. Szeto, J.W.M. Wong, S.C.Y. Wong, S.C. Pak, I.F.F. Benzie, DNA Protective Effect of Ginseng and the Antagonistic Effect of Chinese Turnip: A Preliminary Study, Plant Foods Hum. Nutr. 66 (2011) 97–100. doi:10.1007/s11130-011-0209-5.
- A.M. Abdel-salam, as a Protective and Therapeutic Meal, 4 (2014) 418–425.
- D. Marreiro, K. Cruz, J. Morais, J. Beserra, J. Severo, A. de Oliveira, Zinc and Oxidative Stress: Current Mechanisms, Antioxidants. 6 (2017) 24. doi:10.3390/antiox6020024.
- G. Å imić, D. Horvat, K. Dvojković, I. Abićić, M.V. Vuletić, M. Tucak, A. Lalić, Evaluation of total phenolic content and antioxidant activity of malting and hulless barley grain and malt extracts, Czech J. Food Sci. 35 (2017) 73–78. doi:10.17221/144/2016-CJFS.
- L. Sui, W.L. Anderson, M.E. Gilbert, Impairment in Short-Term but Enhanced Long-Term Synaptic Potentiation and ERK Activation in Adult Hippocampal Area CA1 Following Developmental Thyroid Hormone Insufficiency, Toxicol. Sci. 85 (2005) 647–656. doi:10.1093/toxsci/kfi095.
- G. Bucurescu, Neurological Manifestations of Thyroid Disease, Medscape. (2016) 1–5.
- G.E. Gillies, S. McArthur, Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines., Pharmacol. Rev. 62 (2010) 155–98. doi:10.1124/pr.109.002071.
- M.C. Craig, P.C. Fletcher, E.M. Daly, J. Rymer, M. Brammer, V. Giampietro, D.G.M. Murphy, Physiological variation in estradiol and brain function: A functional magnetic resonance imaging study of verbal memory across the follicular phase of the menstrual cycle, Horm. Behav. 53 (2008) 503–508. doi:10.1016/J.YHBEH.2007.11.005.
- S. Benmansour, O.S. Adeniji, A.A. Privratsky, A. Frazer, Effects of long-term treatment with estradiol and estrogen receptor subtype agonists on serotonergic function in ovariectomized rats, Neuroendocrinology. 103 (2016) 269–281. doi:10.1159/000437268.
- S. Benmansour, L.D. Arroyo, A. Frazer, Comparison of the Antidepressant-Like Effects of Estradiol and That of Selective Serotonin Reuptake Inhibitors in Middle-Aged Ovariectomized Rats, Front. Aging Neurosci. 8 (2016) 1–13. doi:10.3389/fnagi.2016.00311.
- M. Cansev, R.J. Wurtman, Aromatic Amino Acids in the Brain, in: Handb. Neurochem. Mol. Neurobiol., 2007: pp. 59–97. doi:10.1007/978-0-387-30373-4_4.
- L.E. Delisi, Handbook of Neurochemistry and Molecular Neurobiology, Handb. Neurochem. Mol. Neurobiol. Schizophr. 27 (2009) 107–241. doi:10.1016/j.jns.2009.03.019.
- H. Barakat, S. El-masry, Impact of folic acid on the neurotransmitters and oxidant- antioxidant balance in hypothyroid and hyperthyroid rats, Int. J. Pharma Bio Sci. 6 (2015) 1155–1165.
- M. Bauer, A. Heinz, P. Whybrow, Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain, Mol. Psychiatry. 7 (2002) 140–156. doi:10.1038/sj/mp/4000963.
- W.A. Hassan, T.A. Rahman, M.S. Aly, A.S. Shahat, Alterations in monoamines level in discrete brain regions and other peripheral tissues in young and adult male rats during experimental hyperthyroidism, Int. J. Dev. Neurosci. 31 (2013) 311–318. doi:10.1016/j.ijdevneu.2013.03.003.
- J.L. Venero, A.J. Herrera, A. Machado, J. Cano, Changes in neurotransmitter levels associated with the deficiency of some essential amino acids in the diet., Br. J. Nutr. 68 (1992) 409–20.
- T. Zhu, L. Zhan, D. Liang, J. Hu, Z. Lu, X. Zhu, W. Sun, L. Liu, E. Xu, Hypoxia-Inducible Factor 1α Mediates Neuroprotection of Hypoxic Postconditioning Against Global Cerebral Ischemia, J. Neuropathol. Exp. Neurol. 73 (2014) 975–986.
- N. Just, S. Sonnay, Investigating the role of glutamate and GABA in the modulation of transthalamic activity: A combined fMRI-fMRS Study, Front. Physiol. 8 (2017) 30.
- D. Han, Q.-G. Zhang, Yong-Liu, C. Li, Y.-Y. Zong, C.-Z. Yu, W. Wang, J.-Z. Yan, G.-Y. Zhang, Co-activation of GABA receptors inhibits the JNK3 apoptotic pathway via the disassembly of the GluR6-PSD95-MLK3 signaling module in cerebral ischemic-reperfusion, FEBS Lett. 582 (2008) 1298–1306.
- S.C. Wiens, V.L. Trudeau, Thyroid hormone and gamma-aminobutyric acid (GABA) interactions in neuroendocrine systems., Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 144 (2006) 332–44. doi:10.1016/j.cbpa.2006.01.033.
- H. Mitani, Y. Shirayama, T. Yamada, K. Maeda, C.R. Ashby, R. Kawahara, Correlation between plasma levels of glutamate, alanine and serine with severity of depression, Prog. Neuro-Psychopharmacology Biol. Psychiatry. 30 (2006) 1155–1158. doi:10.1016/j.pnpbp.2006.03.036.
- P. Celada, M. Puig, M. Amargós-Bosch, A. Adell, F. Artigas, The therapeutic role of 5-HT1A and 5-HT2A receptors in depression., J. Psychiatry Neurosci. 29 (2004) 252–65.
- B. Li, S. Zhang, M. Li, L. Hertz, L. Peng, Serotonin increases ERK1/2phosphorylation in astrocytes by stimulation of 5-HT2Band 5-HT2Creceptors, Neurochem. Int. 57 (2010) 432–439. doi:10.1016/j.neuint.2010.04.017.
- K.E. Yoest, J.A. Cummings, J.B. Becker, Estradiol, Dopamine and Motivation, Cent Nerv Syst Agents Med Chem. Cent Nerv Syst Agents Med Chem. 14 (2014) 83–89. doi:10.14440/jbm.2015.54.A.
- A. Crider, A. Pillai, Estrogen Signaling as a Therapeutic Target in Neurodevelopmental Disorders, J. Pharmacol. Exp. Ther. 360 (2016) 48–58. doi:10.1124/jpet.116.237412.
- M. Karpinski, G.F. Mattina, M. Steiner, Effect of Gonadal Hormones on Neurotransmitters Implicated in the Pathophysiology of Obsessive-Compulsive Disorder: A Critical Review, Neuroendocrinology. 105 (2017) 1–16. doi:10.1159/000453664.
References
S. Wu, G. Tan, X. Dong, Z. Zhu, W. Li, Z. Lou, Y. Chai, Metabolic Profiling Provides a System Understanding of Hypothyroidism in Rats and Its Application, PLoS One. 8 (2013).
L.D.K.E. Premawardhana, Management of thyroid disorders., Postgrad. Med. J. 82 (2006) 552–8.
Y.J. Chang, C.M. Hwu, C.C. Yeh, P.S. Wang, S.W. Wang, Effects of subacute hypothyroidism on metabolism and growth-related molecules, Molecules. 19 (2014) 11178–11195. doi:10.3390/molecules190811178.
R. Goel, R. Raju, A Signaling Network of Thyroid-Stimulating Hormone, J. Proteomics Bioinform. 04 (2011) 238–241. doi:10.4172/jpb.1000195.
J. Bernal, Thyroid hormone receptors in brain development, 3 (2007) 249–259. doi:10.1038/ncpendmet0424.
A.S. Evers, Paracrine interactions of thyroid hormones and thyroid stimulation hormone in the female reproductive tract have an impact on female fertility, 3 (2012) 1–8. doi:10.3389/fendo.2012.00050.
E. Tousson, W. Ibrahim, N. Arafa, M. a Akela, Monoamine concentrations changes in the PTU-induced hypothyroid rat brain and the ameliorating role of folic acid., Hum. Exp. Toxicol. 31 (2012) 282–9. doi:10.1177/0960327111405863.
C. Cortés, E. Eugenin, E. Aliaga, L.J. Carreño, S.M. Bueno, P. a Gonzalez, S. Gayol, D. Naranjo, V. Noches, M.P. Marassi, D. Rosenthal, C. Jadue, P. Ibarra, C. Keitel, N. Wohllk, F. Court, A.M. Kalergis, C. a Riedel, Hypothyroidism in the adult rat causes incremental changes in brain-derived neurotrophic factor, neuronal and astrocyte apoptosis, gliosis, and deterioration of postsynaptic density., Thyroid. 22 (2012) 951–63. doi:10.1089/thy.2010.0400.
M.H. Rahman, M.Y. Ali, The Relationships between Thyroid Hormones and the Brain Serotonin (5-Ht) System and Mood: Of Synergy and Significance in the Adult Brain- A Review., Faridpur Med. Coll. J. 9 (2015) 98–101.
M.F. Bauer, S. Hofmann, W. Neupert, Import of mitochondrial proteins., Int. Rev. Neurobiol. 53 (2002) 57–90.
J. Dong, W. Liu, Y. Wang, Y. Hou, Q. Xi, J. Chen, Developmental iodine deficiency resulting in hypothyroidism reduces hippocampal ERK1/2 and CREB in lactational and adolescent rats., BMC Neurosci. 10 (2009) 149. doi:10.1186/1471-2202-10-149.
N. Gangopadhyay, M.B. Hossain, D.K. Rai, N.P. Brunton, A review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies, Molecules. 20 (2015) 10884–10909. doi:10.3390/molecules200610884.
M.K.E. Youssef, F.A.E. El-fishawy, E.A.E. Ramadan, Nutritional Assessment of Barley , Talbina and Their Germinated Products, 3 (2013) 56–65.
Y. Zhu, T. Li, X. Fu, A.M. Abbasi, B. Zheng, R.H. Liu, Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.), J. Funct. Foods. 19 (2015) 439–450. doi:10.1016/j.jff.2015.09.053.
E. Idehen, Y. Tang, S. Sang, Bioactive phytochemicals in barley, J. Food Drug Anal. 25 (2017) 148–161. doi:10.1016/j.jfda.2016.08.002.
A.M. El-Bakry, A.W. El-Gareib, R.G. Ahmed, Comparative study of the effects of experimentally induced hypothyroidism and hyperthyroidism in some brain regions in albino rats., Int. J. Dev. Neurosci. 28 (2010) 371–389.
A.E. Bawazir, Investigations on the Chronic Effect of Talbina (Barly Water) on Hormone (Cortisol and Testosterone), Reproductive System and Some Neurotransmitter, Am-Euras J Sci Res. 5 (2010) 134–142.
Marwa M Abd-Rabo; Lobna F Wahman; Magda HM Yousef, potential-impact-of-talbina-on-pituitaryadrenalgonadal-disorders-in-hypothyroid-adult-female-rats, Der Pharm. Lett. 10 (2018) 91–102.
L.H. Bailey, A concise dictionary of plants cultivated in the United States and Canada., Macmillan,New York, USA. (1976) Pp-1290.
S.W. Karmarkar, K.M. Bottum, S.A. Tischkau, Considerations for the use of anesthetics in neurotoxicity studies., Comp. Med. 60 (2010) 256–62.
P. Pagel, J. Blome, H.U. Wolf, High-performance liquid chromatographic separation and measurement of various biogenic compounds possibly involved in the pathomechanism of Parkinson's disease, J. Chromatogr. B Biomed. Sci. Appl. 746 (2000) 297–304. doi:10.1016/S0378-4347(00)00348-0.
R.L. Heinrikson, S.C. Meredith, Amino acid analysis by reverse-phase high-performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate, Anal. Biochem. 136 (1984) 65–74. doi:10.1016/0003-2697(84)90307-5.
N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell Res. 175 (1988) 184–191.
P. R.T., P. MW, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res. May 1;29(9)E45. (n.d.).
M.M Abd-Rabo, L.F. Wahman, M.H. Yousef, Potential Impact of Talbina on Pituitary-Adrenal-Gonadal Disorders in Hypothyroid Adult Female Rats, Der Pharm. Lett. 10 (2018) 91–102.
E.K. Wirth, U. Schweizer, J. Köhrle, Transport of thyroid hormone in brain, Front. Endocrinol. (Lausanne). 5 (2014). doi:10.3389/fendo.2014.00098.
R.P. Singh, A. Singh, H.V. Sirohi, A.K. Singh, P. Kaur, S. Sharma, T.P. Singh, Dual binding mode of antithyroid drug methimazole to mammalian heme peroxidases - structural determination of the lactoperoxidase-methimazole complex at 1.97 í… resolution., FEBS Open Bio. 6 (2016) 640–50. doi:10.1002/2211-5463.12051.
K. Dahiya, M. Verma, R. Dhankhar, V.S. Ghalaut, P.S. Ghalaut, A. Sachdeva, I. Malik, R. Kumar, Thyroid profile and iron metabolism: Mutual relationship in hypothyroidism, Biomed. Res. 27 (2016) 1212–1215.
E. Gokdeniz, C. Demir, I. Dilek, The effects of iron deficiency anemia on the thyroid functions, J. Clin. Exp. Investig. 1 (2010) 156–160.
E.C. Muñoz, J.L. Rosado, P. López, H.C. Furr, L.H. Allen, Iron and zinc supplementation improves indicators of vitamin A status of Mexican preschoolers 1 , 2, Am. J. Clin. Nutr. 71 (2000) 789–94.
M.M. Badrasawi, S. Shahar, Z.A. Manaf, H. Haron, Effect of Talbinah food consumption on depressive symptoms among elderly individuals in long term care facilities, randomized clinical trial, Clin. Interv. Aging. 8 (2013) 279–285. doi:10.2147/CIA.S37586.
A. Mancini, C. Di Segni, S. Raimondo, G. Olivieri, A. Silvestrini, E. Meucci, D. Currò, Thyroid Hormones, Oxidative Stress, and Inflammation, Mediators Inflamm. 2016 (2016). doi:10.1155/2016/6757154.
M. Hosseini, S.S. Dastghaib, H. Rafatpanah, M.A.-R. Hadjzadeh, H. Nahrevanian, I. Farrokhi, Nitric oxide contributes to learning and memory deficits observed in hypothyroid rats during neonatal and juvenile growth, Clinics. 65 (2010) 1175–1181. doi:10.1590/S1807-59322010001100021.
T.S. Kumaravel, B. Vilhar, S.P. Faux, A.N. Jha, Comet Assay measurements: A perspective, Cell Biol. Toxicol. 25 (2009) 53–64. doi:10.1007/s10565-007-9043-9.
Y.T. Szeto, J.W.M. Wong, S.C.Y. Wong, S.C. Pak, I.F.F. Benzie, DNA Protective Effect of Ginseng and the Antagonistic Effect of Chinese Turnip: A Preliminary Study, Plant Foods Hum. Nutr. 66 (2011) 97–100. doi:10.1007/s11130-011-0209-5.
A.M. Abdel-salam, as a Protective and Therapeutic Meal, 4 (2014) 418–425.
D. Marreiro, K. Cruz, J. Morais, J. Beserra, J. Severo, A. de Oliveira, Zinc and Oxidative Stress: Current Mechanisms, Antioxidants. 6 (2017) 24. doi:10.3390/antiox6020024.
G. Å imić, D. Horvat, K. Dvojković, I. Abićić, M.V. Vuletić, M. Tucak, A. Lalić, Evaluation of total phenolic content and antioxidant activity of malting and hulless barley grain and malt extracts, Czech J. Food Sci. 35 (2017) 73–78. doi:10.17221/144/2016-CJFS.
L. Sui, W.L. Anderson, M.E. Gilbert, Impairment in Short-Term but Enhanced Long-Term Synaptic Potentiation and ERK Activation in Adult Hippocampal Area CA1 Following Developmental Thyroid Hormone Insufficiency, Toxicol. Sci. 85 (2005) 647–656. doi:10.1093/toxsci/kfi095.
G. Bucurescu, Neurological Manifestations of Thyroid Disease, Medscape. (2016) 1–5.
G.E. Gillies, S. McArthur, Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines., Pharmacol. Rev. 62 (2010) 155–98. doi:10.1124/pr.109.002071.
M.C. Craig, P.C. Fletcher, E.M. Daly, J. Rymer, M. Brammer, V. Giampietro, D.G.M. Murphy, Physiological variation in estradiol and brain function: A functional magnetic resonance imaging study of verbal memory across the follicular phase of the menstrual cycle, Horm. Behav. 53 (2008) 503–508. doi:10.1016/J.YHBEH.2007.11.005.
S. Benmansour, O.S. Adeniji, A.A. Privratsky, A. Frazer, Effects of long-term treatment with estradiol and estrogen receptor subtype agonists on serotonergic function in ovariectomized rats, Neuroendocrinology. 103 (2016) 269–281. doi:10.1159/000437268.
S. Benmansour, L.D. Arroyo, A. Frazer, Comparison of the Antidepressant-Like Effects of Estradiol and That of Selective Serotonin Reuptake Inhibitors in Middle-Aged Ovariectomized Rats, Front. Aging Neurosci. 8 (2016) 1–13. doi:10.3389/fnagi.2016.00311.
M. Cansev, R.J. Wurtman, Aromatic Amino Acids in the Brain, in: Handb. Neurochem. Mol. Neurobiol., 2007: pp. 59–97. doi:10.1007/978-0-387-30373-4_4.
L.E. Delisi, Handbook of Neurochemistry and Molecular Neurobiology, Handb. Neurochem. Mol. Neurobiol. Schizophr. 27 (2009) 107–241. doi:10.1016/j.jns.2009.03.019.
H. Barakat, S. El-masry, Impact of folic acid on the neurotransmitters and oxidant- antioxidant balance in hypothyroid and hyperthyroid rats, Int. J. Pharma Bio Sci. 6 (2015) 1155–1165.
M. Bauer, A. Heinz, P. Whybrow, Thyroid hormones, serotonin and mood: of synergy and significance in the adult brain, Mol. Psychiatry. 7 (2002) 140–156. doi:10.1038/sj/mp/4000963.
W.A. Hassan, T.A. Rahman, M.S. Aly, A.S. Shahat, Alterations in monoamines level in discrete brain regions and other peripheral tissues in young and adult male rats during experimental hyperthyroidism, Int. J. Dev. Neurosci. 31 (2013) 311–318. doi:10.1016/j.ijdevneu.2013.03.003.
J.L. Venero, A.J. Herrera, A. Machado, J. Cano, Changes in neurotransmitter levels associated with the deficiency of some essential amino acids in the diet., Br. J. Nutr. 68 (1992) 409–20.
T. Zhu, L. Zhan, D. Liang, J. Hu, Z. Lu, X. Zhu, W. Sun, L. Liu, E. Xu, Hypoxia-Inducible Factor 1α Mediates Neuroprotection of Hypoxic Postconditioning Against Global Cerebral Ischemia, J. Neuropathol. Exp. Neurol. 73 (2014) 975–986.
N. Just, S. Sonnay, Investigating the role of glutamate and GABA in the modulation of transthalamic activity: A combined fMRI-fMRS Study, Front. Physiol. 8 (2017) 30.
D. Han, Q.-G. Zhang, Yong-Liu, C. Li, Y.-Y. Zong, C.-Z. Yu, W. Wang, J.-Z. Yan, G.-Y. Zhang, Co-activation of GABA receptors inhibits the JNK3 apoptotic pathway via the disassembly of the GluR6-PSD95-MLK3 signaling module in cerebral ischemic-reperfusion, FEBS Lett. 582 (2008) 1298–1306.
S.C. Wiens, V.L. Trudeau, Thyroid hormone and gamma-aminobutyric acid (GABA) interactions in neuroendocrine systems., Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 144 (2006) 332–44. doi:10.1016/j.cbpa.2006.01.033.
H. Mitani, Y. Shirayama, T. Yamada, K. Maeda, C.R. Ashby, R. Kawahara, Correlation between plasma levels of glutamate, alanine and serine with severity of depression, Prog. Neuro-Psychopharmacology Biol. Psychiatry. 30 (2006) 1155–1158. doi:10.1016/j.pnpbp.2006.03.036.
P. Celada, M. Puig, M. Amargós-Bosch, A. Adell, F. Artigas, The therapeutic role of 5-HT1A and 5-HT2A receptors in depression., J. Psychiatry Neurosci. 29 (2004) 252–65.
B. Li, S. Zhang, M. Li, L. Hertz, L. Peng, Serotonin increases ERK1/2phosphorylation in astrocytes by stimulation of 5-HT2Band 5-HT2Creceptors, Neurochem. Int. 57 (2010) 432–439. doi:10.1016/j.neuint.2010.04.017.
K.E. Yoest, J.A. Cummings, J.B. Becker, Estradiol, Dopamine and Motivation, Cent Nerv Syst Agents Med Chem. Cent Nerv Syst Agents Med Chem. 14 (2014) 83–89. doi:10.14440/jbm.2015.54.A.
A. Crider, A. Pillai, Estrogen Signaling as a Therapeutic Target in Neurodevelopmental Disorders, J. Pharmacol. Exp. Ther. 360 (2016) 48–58. doi:10.1124/jpet.116.237412.
M. Karpinski, G.F. Mattina, M. Steiner, Effect of Gonadal Hormones on Neurotransmitters Implicated in the Pathophysiology of Obsessive-Compulsive Disorder: A Critical Review, Neuroendocrinology. 105 (2017) 1–16. doi:10.1159/000453664.