Issue
Copyright (c) 2024 woojin lee, Euijin Sohn, Sang Bum Kim
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The undersigned hereby assign all rights, included but not limited to copyright, for this manuscript to CMB Association upon its submission for consideration to publication on Cellular and Molecular Biology. The rights assigned include, but are not limited to, the sole and exclusive rights to license, sell, subsequently assign, derive, distribute, display and reproduce this manuscript, in whole or in part, in any format, electronic or otherwise, including those in existence at the time this agreement was signed. The authors hereby warrant that they have not granted or assigned, and shall not grant or assign, the aforementioned rights to any other person, firm, organization, or other entity. All rights are automatically restored to authors if this manuscript is not accepted for publication.Myoblast-derived exosomes reduce anticancer drug-induced muscle toxicity via an autocrine pathway
Corresponding Author(s) : Sang Bum Kim
Cellular and Molecular Biology,
Vol. 70 No. 10: Issue 10
Abstract
During cancer treatment, cachexia, characterized by muscle loss, often occurs, with one of the contributing factors being muscle toxicity caused by anticancer drugs. It affects approximately 80% of patients with cancer, particularly those with digestive organ malignancies. However, effective treatment for this condition remains elusive. Therefore, in this study, we aimed to investigate the therapeutic potential of exosomes in relieving cachexia. Specifically, we examined the exosomes derived from muscle stem cells, which are involved in muscle cell regeneration and their role in controlling anticancer drug-induced muscle toxicity. First, exosomes secreted from myoblasts under depletion conditions were characterized. Exosomes were isolated under serum starvation conditions, displaying an average size of 113 nm and containing typical exosome marker proteins. Furthermore, electron microscopy confirmed their exosomal nature. To confirm the paracrine function of myoblast-derived exosomes (MDEs), a significant increase in cell viability was observed upon their application to myoblasts. No changes were observed in the cell cycle during exosome treatment. However, it was confirmed that the quantity of viable cells increased under serum starvation conditions. This suggests that MDEs possess the function of enhancing myoblast survival and overall cell viability. Cachexia, a prevalent condition in patients with cancer, often manifests as muscle cell depletion induced by anticancer drugs. The potential of MDEs to inhibit cell death induced by anticancer drugs was investigated. The findings revealed that while high concentrations of oxaliplatin and doxorubicin, known to induce cachexia, did not restore cell viability, lower concentrations did. This study suggests that MDEs may have the potential to control cachexia, a common side effect of anticancer drugs, by reducing muscle cell damage induced by anticancer drugs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX