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Abstract
Cancer is one of the leading causes of death worldwide. Although the mechanisms of gene regulation in cancer have been the subject of intense investigation during 
the last decades, the precise role of regulatory processes in cancer is largely unknown. More specifically, it is not completely understood how microRNAs and trans-
cription factors regulate and influence the cancer-related processes. In the present study, using cancer-specific biological networks we examine the role of microR-
NAs and transcription factors (TFs) in regulation of important cancer genes. The importance measures which are used in this study consider both network structure 
information and biological data on miRNA- and TF-based gene regulation. By analyzing cancer-specific PPI, signaling and metabolic networks, it was shown that 
microRNAs and transcription factors tend to regulate those genes which are in the neighborhood of important components of cancer-specific PPI, signaling, and meta-
bolic networks. The role of microRNAs was found to be particularly important, which confirms our previously-published results on the importance of microRNAs in 
detecting important network components. Moreover, we highlight that the miRNAs appear to apply their function via regulating the “neighbors” of important cancer 
genes, which implies their indirect role in cancer, and presumably, in fine-tuning the effect of other cancer-related genes. 
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Introduction

The expressions of genes are regulated at different 
levels by respective factors. At transcription level the 
regulation exerted by DNA elements and factors acting 
upon them leads to differential gene expression.  The 
genomic elements and factors involved are very diverse 
(1-3).  Regulation of promoter elements by diverse 
combination of different transcription factors (TFs) 
constitutes the basis of transcription which is tissue- 
and development-specific. The expression of genes is 
also controlled by the chromatin state encompassing 
the genes through epigenetic mechanisms (4). Many 
of these also are correlated with different signal trans-
duction pathways, which makes the scene of action 
very complicated. On the other hand, in most cases 
translation of an mRNA to the respective phenotype 
is dependent on other regulatory pathways. Post-trans-
criptionally, mRNAs are controlled by a plethora of 
noncoding RNAs (5, 6).  Among these new players are 
microRNAs (miRNAs) emerging as important regula-
tory molecules which control the level of translation of 
respective target mRNAs (7, 8).

MicroRNAs are small, ~22 nt long noncoding RNAs 
comprising 1-2% of genes in eukaryotes (9, 10). They 
are located both intra- and intergenically throughout the 
genome.  A considerable proportion of miRNA genes are 
organized in clusters and are transcribed as polycistro-
nic products (11), which is presumably related to their 
interrelated functions in targeting the same mRNA(s) 
in a given cell or particular developmental stage.  With 

some exceptions, miRNAs are transcribed by pol II and 
undergo those processing steps observed in case of mR-
NAs (8, 9).  Thousands of miRNAs are discovered in 
human and also in eukaryotic model organisms. The fact 
that each miRNA can interact with hundreds of mRNAs 
demonstrates their vital role in normal gene regulation 
and disease pathogenesis where dysregulated. 

MiRNAs are transcribed as a long primary miRNA 
which then processed by nuclear RNase III Drosha to a 
hairpin-shaped 70-120 nt pre-miRNAs. Consequently, 
pre-miRNA, exported to cytoplasm, is further processed 
by RNA induced silencing complex (RISC) to a 22 nt 
mature miRNA (12). RISC guides the single stranded 
miRNA to its mRNA targets at their 3’UTR for trans-
lational attenuation of targeted transcripts. The target 
recognition is not done through perfect match between 
miRNA-mRNA, but dictated only by a 7 nt-mer seed 
site (nucleotides 2-8 from 5’ end of miRNAs) as evi-
dence implies, though the context of the seed site may 
be of importance as well. Due to its imperfect match to 
the target sequences many miRNAs can target multiple 
targets and any target in turn may have multiple reco-
gnition sites for the same or different miRNAs (13, 14). 
These make miRNAs perfect players in gene regulatory 
networks as by differential interaction of many miRNAs 
with their respective and potential targets help the sys-
tem to elaborate desired fates and sustain in both normal 
and distressed situations. According to one study only 
one third of miRNAs studied had tissue or cell specific 
expression (13).Therefore, the majority of miRNAs are 
expressed nonspecifically and it appears that the relative 
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expression of ubiquitous miRNAs varies among tissues 
indicating other factors may contribute in differential 
relative expression of ubiquitous miRNAs.

Biological robustness refers to the ability of biolo-
gical systems to remain stable and functional despite 
various internal and external perturbations. Robustness 
is an intrinsic property of biological systems at any le-
vel of their organization, from the regulation of a single 
gene expression in a cell to the survival of the organism 
as a whole (15, 16). Robustness explains both the sta-
bility of living organisms and their evolvability in the 
context of internal and external fluctuations. Variabi-
lity and complexity is the major sources for remaining 
robust. To remain stable (and at the same time chan-
geable), organisms require a complex network of robust 
contents, and robustness has to be seen in the context 
of numerous dynamic pathways and networks (17, 18). 

Breaking down the biological systems into their 
components may not be useful in studying robustness 
which is an emergent property of the system as a whole, 
because there are many redundant components which 
can compensate for each other. In many cases, this phe-
nomenon is attributed to the functional degeneracy of 
major components of living systems at molecular level 
(18, 19). Degeneracy is common in all levels of bio-
logical organization, from the genetic code itself to 
transcriptional and post-transcriptional regulatory ma-
chines (20, 21). Degeneracy (and robustness) is well 
discernible at transcriptional regulation by TFs and the 
epigenetic (soft inheritance) regulation, including trans-
lational control of mRNA targets by numerous diverse 
miRNAs (18, 22). TFs and miRNAs and their regula-
tory effects are the focus of this study.

Expression of every gene is primarily controlled by 
TFs at the transcriptional level and ultimately is fine-
tuned by miRNAs regulating mRNA translational rate. 
Both miRNAs and TFs work cooperatively (and com-
petitively when requires) to determine the differentiated 
state of cells in normal state and in response to intrinsic 
and extrinsic disturbances (23). While TFs work gene-
rally as switch-on and -off regulators, miRNAs modu-
late translation of respective targets via many weak 
interactions which is an intrinsic property providing ro-
bustness to biological systems (24). This is in line with 
the findings that many miRNAs, when knocked down, 
show no apparent effect. This observation indicates the 
weak (but maybe additive) effects of miRNAs regula-
ting biological processes (24).

Cancer is currently the second leading cause of death 
worldwide (25). Currently, over 3 million cancer related 
publications are available in PubMed, which account 
for 12% of the whole biomedical literature indexed in 
this database. Though research on cancer witnessed an 
exponential growth during the last decades, the me-
chanisms underlying cancer development seem to be 
remained unexplored to a great extent. As mentioned 
above, the disparity can be attributed, at least in part, 
to the fact that biological research is mainly devoted to 
the study of biological components, rather than biologi-
cal systems. Consequently, comprehensive systems-le-
vel approaches to study biological systems, e.g. cancer 
cells, may be able to explain the complex phenotypes 
which are otherwise impossible to understand (26).

In a previous study (27), we defined a miRNA-

based measures for gene importance, TAmiC, and then 
using this measure we investigated how miRNAs tend 
to regulate important vertices (or equivalently, genes) 
of different biochemical networks. In the present study, 
we show that TAmiC can successfully predict important 
genes in human cancer networks. The success of this 
measure is independent of the nature of the network. 
Additionally, TAmiC performs significantly better than 
other similar measures (based on the number of TFs that 
regulate a gene). Our results highlight the role of miR-
NAs in regulating the genes involved in cancer.

Materials and methods

Cancer networks
In the present study, a number of human cancer-spe-

cific networks are investigated:
• Cancer signaling network: A manually curated hu-
man cancer signaling network, including 1,634 nodes 
and 4,665 signaling regulatory relations, has been previ-
ously reported (28). In the present work, we applied the 
undirected graph underlying this network.
• Cancer metabolic network: The generic metabolic 
network of cancer cells (29) was used in the present 
study. A constraint-based model of a metabolic network 
is essentially based on a “hypergraph” model (and not 
a “graph” model) of metabolism (30). Therefore, we 
decided to convert this network to a “reaction-centric” 
metabolic network, which is a graph representation of 
the network (31). Application of a reaction-centric met-
abolic model enables us to directly connect the regu-
latory factors (i.e., TFs and miRNAs) to the network 
nodes, which are metabolic enzymes in this case. The 
reaction-centric network representation of cancer meta-
bolic network includes 2,302 vertices (reactions) and 
90,674 edges (linking metabolites).
• Cancer protein-protein interaction (PPI) network: In 
the present work, we used the PPI network of muscle 
bladder cancer (32). This network has been reconstruct-
ed based on literature-mining and includes 286 vertices 
(proteins) and 661 edges (interactions). 
 
MiRNA Targets

The genome-wide predicted human miRNA target 
genes were obtained from the TargetScanS web ser-
ver (version 6.2) (33). This dataset contains a total of 
11,161 genes regulated by 1,537 miRNAs (grouped in 
153 conserved miRNA families). As an independent da-
taset of miRNA targets, we also used the dataset of pre-
dicted miRNA target genes obtained from PicTar (34). 
The latter dataset includes 6,243 genes regulated by 168 
conserved miRNAs.

It should be noted that it is also possible to use the 
high-confidence miRNA targets obtained by HITS-
CLIP experiments (35). Although application of such 
data in our analysis resulted in patterns comparable to 
the application of predicted miRNA targets (data not 
shown), we decided not to use the HITS-CLIP data in 
our analysis. The reason is that, these experiments tend 
to neglect low copy number miRNAs, and therefore, 
the results are biased toward the behavior of high copy 
number miRNAs.
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ply “TAtfC”)is defined as ;
• similar to “AAmiC”, average adjacent miRNA count 
(or simply “AATFC”), is defined as .

Attack robustness
In the present work, we studied the attack robustness 

of biological networks as described previously (27, 45, 
46). In this type of study, network vertices are removed 
consecutively (either in a random order, or alternati-
vely, in the order of their “importance” in the network). 
Then, the size of the largest connected component of the 
network is considered as a measure of network robust-
ness. The more important the removed network vertex, 
the smaller the size of the largest connected component 
of the network. Different measures of importance are 
suggested in the literature (see above). Consequently, 
the choice of the importance measure can influence the 
size of the largest connected component. Removing the 
network vertices at random order might help to unders-
tand the effectiveness of each importance measure.

Results and Discussion

In a previous work (27), we showed that the TAmiC 
measure can successfully predict biologically important 
nodes of a network. Here, we show that the application 
of this measure can be extended to the analysis of can-
cer cells.

Finding important genes in cancer networks using 
TAmiC, TAtfC and degree

First of all, we checked the ability of different impor-
tance measure in detecting important nodes in cancer 
networks. The idea is that, if a measure can successfully 
detect importance vertices of a network, by removing 
these vertices (based on the order of their importance) 
it is possible to “damage” a network. On the contrary, if 
the measure does not successfully predict the important 
vertices, their removing would not damage the network 
beyond what is expected by chance. 

Figure 1 shows the effect of removing vertices from 
the cancer networks when the vertices are removed ran-
domly, or removed based on the order of the six miRNA- 
and TF-based importance measures. From this figure, it 
is obvious that TAtfC and TAmiC are the best measures 
in detecting important vertices in PPI, signaling and 
metabolic cancer networks. On the other hand, deleting 
nodes based on miRcount and TFcount is in fact com-
parable to deleting nodes at random. This observation 
presumably suggests that miRNA and TF do not directly 
regulate the important cancer genes, but they prefer to 
apply their regulation indirectly, i.e., by regulating the 
neighboring vertices of the important nodes.

To further investigate the properties of TAmiC and 
TAtfC, we compared these measures to the classical 
“centrality measures”, which are based on network 
structure only. In Figure 2, performance of these two 
measures in detecting important nodes is compared with 
the performance of degree centrality, and in Supple-
mentary Figure S1 this comparison is done for several 
other centrality measures. Interestingly, the behavior of 
TAtfC and degree (and to some extent that of TAmiC 
and degree) are found to be similar. One may ask whe-
ther these two measures contain additional information 

TF Targets
In the present work, we used two datasets of predicted 
human TF targets:
•	 The Corà dataset (36), including 9,348 target genes. 
This dataset is obtained by an algorithm which com-
bines human and mouse genomic data, sequence over-
representation data and gene co-regulation data.
•	 The Xie dataset (37) including 14,861 target genes. 
This dataset is obtained by comparative analysis of hu-
man, mouse, rat and dog genomes.
• In each of the two datasets, the number of TFs that 
can (potentially) regulate each gene is determined.

Mutation rates of genes
A dataset of human genes along with their nonsyno-

nymous to synonymous substitution rates (dN/dS) are 
obtained from Colombo et al. (38). Briefly, these values 
have been obtained by comparing 35 sets of orthologous 
genes across four genomes, namely human, chimpan-
zee, gorilla, and orangutan.

Essential genes of human
A gene can be considered as “essential” in human if it 

is associated with a life-threatening disease phenotype, 
which typically results in death before puberty (39). A 
list of human essential genes were obtained from DEG 
database (40, 41) (available from http://tubic.tju.edu.cn/
deg/). DEG v10.6 includes 2570 human essential genes.

Human oncogenes
A list of 780 candidate oncogenes are previously re-

ported by Khosravi and coworkers (42). This reference 
list of oncogenes was used for validating the list of top 
cancer genes discovered computationally.

Measures of importance
In this study, several measures of importance are 

compared. A detailed list of these measures and their 
mathematical descriptions are presented in Ref. (27). 
In the present work, eigenvector centrality was compu-
ted using igraph software package (43) (available from 
http://igraph.org), while degree, betweenness and close-
ness centrality measures are computed using NetworkX 
(44) (available from https://networkx.github.io).

In our previous work (27), three miRNA-based 
measures of importance, namely total miRNA count 
(miRcount), total adjacent miRNA count (TAmiC) and 
average adjacent miRNA count (AAmiC) are defined. 
Then, using these measures, we investigated how miR-
NAs tend to regulate important vertices of different bio-
chemical networks. In the present work, the possibility 
of miRNA role in the regulation of important nodes in 
cancer-specific networks is investigated. Additionally, 
one may ask whether TFs have a comparable role in 
regulation of important nodes in cancer networks. The-
refore, analogous to the miRNA-based measures (27), 
we define three TF-based measures of importance. Sup-
pose that  is the number of TFs that regulate (the gene 
in) node  of the network, and  is the set of nodes 
adjacent to node , and  be the subset of neighbors 
of  that are regulated by at least one TF. Then,
• similar to “miRcount”, we define “TFcount” as the 
number of TFs that regulate node ;
• similar to “TAmiC”, total adjacent TF count (or sim-
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compared to degree.
To better show the relationship between TAmiC, 

TAtfC and the classical centrality measures, pairwise 
correlation between these measures are presented in 
Table 1. Note that TAtfC and degree are highly corre-
lated, which suggests that TAtfC and degree are inter-
changeable.

Important genes in cancer networks based on their 
mutation rates

In evolutionary biology, dN/dS represents the ratio 
of the number of nonsynonymous substitutions to the 
number of synonymous substitutions. This value is a 
measure of selective pressure acting on a protein-coding 
gene. In other words, an important protein with “conser-
ved” sequence must have a greater dN/dS value.

In the present work, we investigated the possible 
correlation between the importance of proteins in can-
cer and their “conservedness” based on dN/dS. For this 
purpose, we used a previously reported dataset of hu-
man proteins (38). We compared the conservedness of 
these proteins to the importance rank of proteins in the 
human cancer metabolic network. Figure 3 summarizes 
the results. Although in case of all of the three measures 
a negative correlation is detected, one can observe that 
only in case of TAmiC a significant correlation is ob-
served between importance rank and  dN/dS (p<0.01). 
In case of TAtfC and Degree, the correlation was not 
statistically significant (p>0.05). In conclusion, TAmiC 
is statistically correlated with the conservedness of pro-
teins in metabolic cancer network, which again confirms 
the success of this measure in correctly predicting the 
biologically-relevant important genes.

As mentioned above, TAtfC and degree are high-
ly correlated. Therefore, in cases like Figure 3 where 
degree fails to outperform other importance measures, 
TAtfC also fails in accord, as it seems behaving almost 
similarly.

The top important cancer genes detected by TAmiC
In the next step, we analyzed the top genes which 

are removed from the three networks based on TAmiC, 
TAtfC and degree. It is expected, in general, that top-
ranking important genes of a biological network are 
more “essential” compared to other genes. Figure 4 
shows how frequent are the essential genes among the 
top-ranking network vertices. Interestingly, the results 
show that the success rates of TAmiC, TAtfC and de-
gree are almost similar. As an example, the top 50 genes 
of signaling network are mentioned in Supplementary 
Table S1, which shows that many of the genes are sha-
red by the three top-ranking gene lists. Note that these 
results are fundamentally different from those we re-
ported in our previous work (see Fig. 3A of Ref. 27), 
where TAmiC was found to be significantly more suc-

Figure1. Robustness against simultaneous targeted attack accor-
ding to three TF-based importance measures (TFcount, AAtfC and 
TAtfC) and three previously defined miRNA-based importance 
measures (27), namely miRcount, AAmiC and TAmiC for: (a) can-
cer signaling network; (b) cancer PPI network; and (c) cancer meta-
bolic network. The vulnerability (27) value, V, is also shown in each 
case. The miRNA and TF targets were obtained from PicTar and 
Corà datasets, respectively. The “random” results were obtained by 
10 times repeating a random attack (i.e., by deleting network ver-
tices at random) and taking the average.

(a) (b)

(c)

Figure 2. Robustness against simultaneous targeted attack according 
to TAmiC, TAtfC and degree centrality measure for: (a) cancer-si-
gnaling network; (b) cancer-PPIN and (c) cancer-metabolic network. 
The miRNA and TF targets were obtained from TargetScanS and 
Xie datasets respectively. The “random” results were obtained by 10 
times repeating a random attack (i.e., by deleting network vertices 
irrespective of their importance) and taking the average. It should 
be noted that the more complete view of this analysis including ro-
bustness graphs based on the other centrality measures comprising 
betweenness, closeness and eigenvector centralities besides those 
reflected in this figure has been shown in Figure S1 of the supple-
mentary files. 

Degree Betweenness Closeness eigenvector TAmiC &   
TAtfCTAmiC TAtfC TAmiC TAtfC TAmiC TAtfC TAmiC TAtfC

Cancer signaling network 0.821 0.910 0.702 0.809 0.602 0.568 0.603 0.560 0.814
Cancer metabolic network 0.949 0.978 0.730 0.729 0.893 0.901 0.901 0.910 0.966

Table1. Correlations between TAmiC, TAtfC and the four centrality measures for cancer signaling network, cancer metabolic network. TAmiC and 
TAtfC are computed based on TargetScanS and Xie datasets.

(a)

(c)

(b)
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lar results are observed in case of other networks, which 
shows the significance of our findings.

Based on the analysis of the cancer metabolic 
network, the highest ranking gene was fatty acid syn-
thase (Entrez ID: 2194), which has been introduced as 
a potential therapeutic target in cancer (48). The second 
best ranking gene is ELOVL fatty acid elongase 4 
(Entrez ID: 6785), whose methylation level is recently 
found to be linked to hepatocellular carcinoma (49). 
The third best ranking gene, transmembrane protein 54 
(Entrez ID: 113452), has been also reported to be asso-
ciated with different cancer types (50, 51).Up-regula-
tion of the fourth gene in the list, AMPD3 (Entrez ID: 
272) has been reported to be involved at least in some 
lung adenocarcinomas (52). The fifth gene in this list, 
serine palmitoyltransferase (SPTLC2, Entrez ID: 9517), 
is reported to be linked to breast cancer (53).

Based on the analysis of signaling network, the 
highest ranking gene was androgen receptor, whose 
role in cancer is extensively studied (54, 55). Further-
more, the other top ranked genes in this list, including 
SMAD3 (56), SRC (proto-oncogene non-receptor tyro-
sine kinase) (57), AKT1 (v-akt murine thymoma viral 
oncogene homolog 1) (58) and SMAD4 (59) also have 
well-known roles in carcinogenesis mechanisms.

Based on the PPI network, the top ranked genes are: 
JUN (jun proto-oncogene) (60), tumor protein p53 (61), 
EGFR (epidermal growth factor receptor) (62), RB1 (re-
tinoblastoma 1) (63) and E2F1 (E2F transcription factor 
1) (64). All these genes have putative roles in cancer.

By comparing the list of top genes obtained by TA-
miC, TAtfC and degree, it was observed that in case of 
signaling and PPI networks, best ranked genes at the 
top of the three lists are similar. However, in the case of 
cancer metabolic network, top genes showed variations. 
We conclude that the indispensable role of TAmiC for 
detecting important cancer genes can potentially be ap-
plied for the discovery of new promising drug targets 
for cancer. 

Other articles in this theme issue include references (65-
76).
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