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1. Introduction
Prostate cancer (PCa) is a leading cause of cancer and 

the second most common cause of cancer-related morta-
lity in men [1]. This heterogeneous disease is influenced 
by genetic, environmental, and social factors, contribu-
ting to variable survival rates and epidemiology across 
different populations [2]. Affecting primarily men aged 
45-60, PCa treatment is hindered by a lack of reliable bio-
markers to predict disease outcomes [3]. This deficiency 
leads to potential overtreatment and associated side effects 
from surgery and radiation. While prostate-specific an-
tigen (PSA) testing is used for diagnosis and prognosis, its 
limited specificity makes routine screening controversial, 
as it cannot effectively differentiate between benign condi-

tions and aggressive tumors. This highlights the need for 
improved diagnostic and prognostic tools [4]. Understan-
ding the molecular mechanisms underlying PCa is crucial 
for identifying effective biomarkers and therapeutic strate-
gies. Recent advances in high-throughput sequencing have 
revealed a new class of small noncoding RNAs: tRNA-
derived fragments (tRFs) [5-7]. These 14-50 nucleotide 
fragments originate from precursor or mature tRNAs and 
participate in gene silencing, RNA processing, and protein 
translation, influencing cell stress response, growth, and 
differentiation [8, 9]. tRFs also play significant roles in 
various human diseases, including cancer [10]. tRFs have 
been classified into six categories according to their clea-
vage sites in the parental tRNA: 5′-tRFs, 3′-tRFs, 5′-tRNA 
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halves, 3′-tRNA halves, i-tRFs, and 3′U-tRFs, also refer-
red to as tsRNAs or 1-tRFs [11, 12]. tRFs are found widely 
across life. Initially considered tRNA degradation bypro-
ducts, their prevalence and consistent expression now sug-
gest an important biological function [13-15]. This review 
explores the biogenesis, classification, and roles of tRFs, 
summarizing their presence and impact on prostate cancer 
as described in the current literature. 

2. Classification and biogenesis of tRFs
tRNA-derived fragments (tRFs) are classified based 

on their origin within pre-tRNAs or mature tRNAs. 
Four main classes exist: 1-tRFs, generated by RNase Z 
(ELAC2) cleavage during pre-tRNA processing; [16, 
17] 5′-tRFs, derived from the 5′ end near the D-loop of 
mature tRNAs; 3′-tRFs, derived from the 3′ end near the 
TψC loop; and i-tRFs, originating from internal tRNA 
sites[18].   tRNA halves, including 5′- and 3′-halves, are 
produced via angiogenin (ANG) cleavage at the anticodon 
loop and are also known as tRNA-derived stress-induced 
RNAs [19,20] (Figure 1). Aberrant tRF expression is im-
plicated in cancer development and progression, affecting 
cell proliferation, metastasis, and overall malignancy [21]. 
Consequently, tRFs are promising biomarkers for cancer 
diagnosis, prognosis, and sub-typing.

3. tRF function
3. 1. Regulation of transcription

Transcription is regulated by tRNA-derived small 
RNAs (tsRNAs). For example, Zhang et al. (2016) found 
that a tRNA-Glu-derived piRNA (td-piR(Glu)) interacts 
with PIWIL4 to recruit SETDB1, SUV39H1, and HP1β 
to the CD1A promoter, promoting H3K9 methylation and 
suppressing CD1A transcription in human monocytes 
[23]. Similarly, sperm tRFs preferentially associate with 
promoter regions, potentially influencing metabolic trait 
inheritance and embryonic development [12]. tRFs, both 
Dicer-dependent and -independent, dynamically regulate 
processes during the transition from youth to adulthood. 
They interact with Argonaut proteins (AGOs) to form 
RNA-induced silencing complexes (RISCs), which bind 
to partially complementary regions, primarily within the 
3’ UTR of target mRNAs, resulting in translational repres-
sion and mRNA degradation [7, 24]. In Tetrahymena, 3'-
tRF, along with 5'-tRF, associates with the PIWI protein 
Twi12 to activate the exonucleases Xrn2 and Tan1 for 
rRNA processing [25]. In Tetrahymena, 3'-tRF, along with 
5'-tRF, associates with the PIWI protein Twi12 to activate 
the exonucleases Xrn2 and Tan1 for rRNA processing 
[26]. Furthermore, a set of i-tRFs originating from tRNAs 
like tRNAGlu, tRNAAsp, tRNAGly, and tRNATyr disrupt 
YBX1 binding to the 3′UTRs of oncogenic transcripts in 
breast cancer cells, counteracting YBX1's stabilizing effect 
[27]. Finally, tsGlnCTG interacts with IGF2BP1, an RNA-
binding protein that stabilizes c-Myc mRNA, leading to 
decreased transcript stability and enhanced differentiation 
of mouse embryonic stem cells [28]. 

3. 2. Regulation of translation
tRFs regulate global translation, acting as both posi-

tive and negative modulators. For example, ANG-induced 
5′-tiRNAs, such as 5′-tiRNAAla and 5′-tiRNACys, inhibit 
translation initiation by displacing the eIF4G/A/F com-
plex from capped mRNA with the help of YB-1, promo-

ting stress granule formation [19]. Conversely, the Leu-
CAG 3′-tRF enhances ribosome biogenesis by interacting 
with RPS28 and RPS15 mRNAs, increasing their trans-
lation and tumor cell viability [29]. Furthermore, the 5′-
tRF Gln19 promotes translation elongation in HeLa cells 
by associating with the multi-syntetase complex (MSC); 
however, 5′-tRFs with a conserved GG-dinucleotide motif 
at their 3′ ends can destabilize the MSC and inhibit ribo-
some maturation [30, 31]. 

3. 3. In apoptosis
Beyond gene silencing and translation regulation, tRFs 

influence apoptosis. Hyperosmotic stress induces apop-
tosis in wild-type mouse embryonic fibroblasts by relea-
sing cytochrome c from mitochondria and forming apop-
tosomes [32]. ANG treatment protects mouse embryonic 
fibroblasts (MEFs) and primary neurons from hypertoni-
city-induced apoptosis by generating 5′- and 3′-tiRNAs. 
These tiRNAs sequester cytosolic cytochrome c (Cyt c) 
into a ribonucleoprotein complex, limiting apoptosome 
formation and subsequent apoptosis [33]. 

3. 4. Regulation of reverse transcription
Transposable elements (TEs) are mobile DNA seg-

ments whose transposition can disrupt genomic stabi-
lity, leading to potentially harmful heterochromatin [34].  
Consequently, TE transcription is often epigenetically 
regulated via DNA methylation and histone modifications. 
However, recent evidence suggests that tRNA-derived 
fragments (tRFs) also play a role in TE regulation. Specifi-
cally, 3'-tRFs inhibit mouse LTR-retrotransposons (ERVs) 
by competing with intact tRNAs for the primer binding site 
(PBS), thereby blocking reverse transcription. Conversely, 
tRF-3019 acts as a primer for the reverse transcriptase of 
human T cell leukemia virus type 1 (HTLV-1), enhancing 
viral infection [35, 36].  The 18-nucleotide 3′-tRNA frag-
ments (3′-tRFs) specifically inhibit the activity of mouse 
LTR-retrotransposons, also known as endogenous retro-
viruses (ERVs), by competing with intact tRNAs for the 
highly conserved primer binding site (PBS) of these re-
trotransposons. This competition effectively blocks the 
reverse transcription process of the ERVs [36]. Another 
study indicates that tRF-3019 functions as a primer for the 
reverse transcriptase of human T cell leukemia virus type 

Fig. 1. Classification and biogenesis  of tRF [22]
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5. 2. tRF-Glu-TTC-2 
tRF-Glu-TTC-2, a tRF-5c subtype generated from 

glutamic acid tRNA via cleavage by Dicer and angioge-
nin, is frequently detected in prostate cancer (PCa) tis-
sues by RNA in situ hybridization. Quantitative RT-PCR 
analysis confirmed that tRF-Glu-TTC-2 expression is 
significantly elevated in PCa tissues compared to normal 
adjacent tissues, indicating its potential oncogenic role 
in PCa initiation and progression. High expression levels 
of tRF-Glu-TTC-2 correlate closely with tumor size and 
Gleason score, and functional studies demonstrate that 
its overexpression promotes PCa cell proliferation, while 
knockdown suppresses tumor growth both in vitro and in 
vivo. These findings suggest that tRF-Glu-TTC-2 acts as 
a novel oncogene driving PCa growth and may serve as a 
promising molecular marker for diagnosis and a potential 
therapeutic target in prostate cancer management. Its asso-
ciation with increased tumor cell proliferation indicates 
that tRF-Glu-TTC-2 may be a cancer-promoting gene lin-
ked to PCa progression and prognosis. Targeting tRF-Glu-
TTC-2 (sequence: 5-TCGACTCCCGGTATGGGAAC-
CA-3) [53]. Represents a potential therapeutic strategy to 
slow tumor growth and improve PCa treatment effective-
ness, warranting further investigation of its mechanisms 
and therapeutic potential. 

5. 3. tRF -315, tRF -544
tRF-315 and tRF-544, two tRNA-derived fragments 

(tRFs), exhibit contrasting expression patterns in prostate 
cancer and are implicated in cancer biology. tRF-315, deri-
ved from tRNA(Lys)-CTT (5-CCCGGCTAGCTCAGTC-
GGTAGAGCATGG -3) and typically 18-22 nucleotides 
long, is often upregulated in cancer tissues. Conversely, 
tRF-544, derived from tRNA(Phe)-GAA (5-TCCCTGG
TTCGATCCCGGGTTTCGGCA-3) and typically 14-30 
nucleotides long, is usually downregulated [55, 56]. The 
tRF-315/tRF-544 ratio shows promise as a biomarker for 
prostate cancer progression; a higher ratio correlates with 
poorer progression-free survival and shorter time to relap-
se, suggesting that monitoring these levels could inform 
patient outcomes [55, 57]. 

 Both tRFs influence cellular processes, including gene 
regulation and stress response. tRF-315 interacts with on-
cogenic proteins, potentially impacting tumor growth and 
metastasis [55, 58], and prevents apoptosis in prostate can-
cer cells, particularly in response to cisplatin, by targeting 
genes like GADD45A. Differential expression suggests 
their regulatory roles in tumor biology, modulating gene 
expression and oncogenic transcript stability, crucial for 
cancer development [59, 60]. Research has shown that tRF-
544 is downregulated in prostate cancer tissues compared 
to healthy tissues. The ratio of     tRF-544 has been identi-
fied as a potential biomarker for prostate cancer progres-
sion. A higher ratio correlates suggesting that monitoring 
this ratio could aid in assessing tumor aggressiveness and 
guiding treatment strategies [18, 54]. Knockdown experi-
ments show that reducing tRF-315 inhibits prostate cancer 
cell proliferation, indicating its oncogenic role. Given its 
involvement in tumor progression and treatment response, 
tRF-315 is being explored as a potential therapeutic target 
to improve cancer treatment [54, 57, 61]. 

5. 4. tRF-562   
Prostate cancer RNA sequencing reveals significant 

1 (HTLV-1) by binding to the primer binding site (PBS), 
which subsequently enhances the viral infection process 
[37]. 

4. Role and clinical value of tRFs in cancers
MINTbase v2. 0, published in 2018, compiles 26, 531 

unique human tRFs from TCGA data (as of October 2017) 
and serves as a resource for cancer-related tRF studies [38]. 
Correlation network analyses have revealed race and eth-
nicity-dependent associations between tRFs and mRNA in 
prostate adenocarcinoma and triple-negative breast cancer 
[39], highlighting the role of tRFs in posttranscriptional 
regulation in cancer. Aberrant tRF expression and function 
are observed across various cancers, including breast, gas-
tric, and colorectal cancers, and correlate with clinical cha-
racteristics and survival outcomes [40, 41]. This analysis 
highlights the significant role of tRFs in posttranscriptio-
nal regulation related to cancer. It emphasizes that abnor-
mal expression and function of specific tRFs are observed 
in various cancers, including breast, gastric, and colorectal 
cancers. Additionally, it points to a correlation between the 
dysregulation of tRFs and clinical characteristics as well 
as survival outcomes in cancer patients [42-44]. Overall, 
tRFs play a significant role in cancer development and 
progression, influencing key processes such as tumor cell 
proliferation, metastasis, apoptosis, and resistance to che-
motherapy [21, 45, 46]. 

5. Type of tRFs in prostate cancer
5. 1. tRF-1001

In 2009, Lee et al. identified tRF-1001, a tRF-1 derived 
from a Ser-TGA tRNA precursor, in a prostate cancer cell 
line using high-throughput RNA sequencing [7]. tRF-
1001, a representative tRF-1 molecule, initiates immedia-
tely after the mature tRNA's 3′ end, prior to CCA addition. 
The 3′ ends of tRF-1 molecules are characterized by 5-6 
consecutive thymines, indicative of RNA polymerase III 
termination sites [47]. These 3′-trailer sequences are gene-
rated during tRNA maturation by the tRNA endonuclease 
ELAC2[48]. ELAC2 knockdown reduces tRF-1001 levels 
while increasing pre-tRNA levels, confirming that tRF-
1001 biogenesis occurs in the cytoplasm, where both mo-
lecules are exclusively localized [7].  tRF-1001 plays a si-
gnificant role in cancer, especially in cell proliferation, and 
exhibits elevated expression in various cancer cell lines, 
correlating with cell growth. As a functional RNA frag-
ment, tRF-1001 influences colon cancer cell proliferation 
by inducing G2 phase arrest. Given its cytoplasmic gene-
ration by ELAC2, a gene linked to prostate cancer suscep-
tibility, tRFs like tRF-1001 are considered a distinct class 
of short RNAs with precise sequences and specific expres-
sion patterns, suggesting their potential as therapeutic tar-
gets or biomarkers for cancer diagnosis and prognosis [7, 
49]. Studies indicate that tRF-1001 expression is dysregu-
lated in prostate cancer tissues compared to normal tissues 
and correlates with clinical parameters like Gleason scores 
and progression-free survival [50, 51]. Elevated tRF-1001 
levels in prostate cancer patients are associated with poo-
rer prognoses, highlighting their potential as independent 
prognostic biomarkers for disease progression [46, 52]. 
The sequence of tRF-1001 is 5′-AAATAAGAGCACC-
CGCTTC-3′. 
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deregulation of tRNA-derived fragments (tRFs), including 
tRF 562 (5-TCGATTCCCGGCCAACGC-3), compared 
to normal tissue. This differential expression, with both 
up- and downregulation, suggests a role for tRFs in tumor 
biology [50]. 

5. 5. SHOT-RNAs
Sex hormone-dependent TRNA-derived RNAs (SHOT-

RNAs), a newly discovered class of tRNA-derived small 
RNAs, are produced through angiogenin (ANG)-mediated 
cleavage of aminoacylated mature tRNAs at the anticodon 
loop [62]. Similar to tRNA-derived stress-induced RNAs 
(tiRNAs), which also result from ANG-mediated cleavage 
under stress conditions [62, 63]. 

SHOT-RNAs are particularly expressed in sex hor-
mone-dependent cancers. In these cancers, where sex hor-
mones and their receptors are crucial for development and 
progression, SHOT-RNAs influence sex hormone signa-
ling, stimulating ANG-mediated tRNA cleavage and gene-
rating two types: 5′-SHOT-RNAs (5′-phosphate, 3′-cyclic 
phosphate) and 3′-SHOT-RNAs (5′-hydroxyl, 3′-amino 
acid). Notably, 5′-SHOT-RNAs promote cell proliferation 
[64]. SHOT-RNAs are significantly expressed in estrogen 
receptor-positive breast cancer and androgen receptor-
positive prostate cancer but not in other cancer types or 
receptor-negative counterparts [54, 64] suggesting specific 
regulation by sex hormones. Their distinct expression pat-
tern makes SHOT-RNAs potential biomarkers for diagno-
sing and monitoring hormone-dependent cancers, reflec-
ting potential tumor behavior and patient prognosis.

6. Methods 
This review was conducted through a systematic lite-

rature search using databases such as PubMed, Google 
Scholar, Web of Science, and ScienceDirect, focusing on 
peer-reviewed articles (2010–2024) related to tRNA-de-

rived fragments (tRFs) and their role in prostate cancer 
(PCa). Key search terms included "tRNA-derived frag-
ments, " "tRFs, " "prostate cancer, " "SHOT-RNAs, " and 
"non-coding RNA biomarkers. " Relevant studies were 
selected based on their focus on tRF biogenesis, classi-
fication, molecular functions, and clinical implications in 
PCa, while non-English and irrelevant publications were 
excluded. Data extraction centered on the mechanisms of 
tRF action, including their roles in transcription, transla-
tion, apoptosis, and retrotransposon regulation, with par-
ticular emphasis on well-characterized tRFs such as tRF-
1001, tRF-Glu-TTC-2, tRF-315, tRF-544, tRF-562, and 
SHOT-RNAs. Bioinformatics resources, including MINT-
base v2. 0 and TCGA datasets, were utilized to analyze tRF 
expression profiles in PCa. Additionally, experimental evi-
dence from knockdown studies, qRT-PCR, and RNA-seq 
was evaluated to assess tRF interactions with key proteins 
(e. g. , YBX1, IGF2BP1, angiogenin) and their impact on 
cancer progression. Clinical correlations, such as associa-
tions with Gleason scores, progression-free survival, and 
therapeutic resistance, were also examined to explore the 
diagnostic, prognostic, and therapeutic potential of tRFs 
in PCa. This comprehensive approach ensured a thorough 
synthesis of current knowledge on tRFs in prostate cancer. 

7. Conclusion and suggestion
The study identifies a new class of small non-coding 

RNAs, known as tRNA- derived fragments (tRFs), as 
potential clinical biomarkers for diagnosing, prognosing, 
and classifying tumors in prostate cancer (PCa) patients. 
This article suggests that tRFs can offer important dia-
gnostic and prognostic insights that are independent of 
the Gleason score, potentially aiding clinicians in develo-
ping improved treatment strategies. Further investigation 
into these dysregulated tRFs is expected to uncover new 
mechanisms related to the development and progression 

Table1. Summarize various tRNA-derived fragments (tRFs) in prostate cancer.

Name Sequence Origin Role / Implication in cancer

tRF-
1001 5′-AAATAAGAGCACCCGCTTC-3′ Derived from Ser-TGA 

tRNA precursor

Elevated in cancer; induces 
G2 arrest; associated with 
prognosis

tRF-Glu-
TTC-2 5-TCGACTCCCGGTATGGGAACCA-3′ Derived from glutamic 

acid tRNA 

Elevated in prostate cancer; 
promotes proliferation; 
potential therapeutic target

tRF-315 (5-CCCGGCTAGCTCAGTCGGTAGAGCATGG -3) Derived from tRNA(Lys)-
CTT 

Upregulated in cancer 
tissues, tRF-315 promotes 
tumor growth; inhibits 
apoptosis; knockdown 
reduces proliferation

tRF-544 (5-TCCCTGGTTCGATCCCGGGTTTCGGCA-3) Derived from tRNA(Phe)-
GAA 

Downregulated in prostate 
cancer tissues, Higher tRF-
315/tRF-544 ratio linked to 
poor prognosis

tRF-562 5-TCGATTCCCGGCCAACGC-3′ Derived from tRN -GLy

Deregulated in prostate 
cancer tissue, may play role 
in tumor biology; both up/
down regulated

SHOT-
RNAs

Derived via angiogenin cleavage; 5'-SHOT and 3'-
SHOT

From mature tRNAs at 
anticodon loop, hormone-
dependent expression

Promote cell proliferation; 
potential biomarkers in 
hormone-dependent cancers
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of PCa. Although tRFs show great promise as diagnostic, 
prognostic, and therapeutic targets in cancer, several limi-
tations must be addressed for their clinical application. 
A key limitation is the intra- and inter-heterogeneity of 
tRF expression, which complicates the identification of 
universal tRF biomarkers for cancer diagnosis and pro-
gnosis. Additionally, the unclear molecular mechanisms 
underlying the dysregulation of tRF expression in can-
cer further hinder their clinical use. The advancement of 
tRF-based therapies also encounters challenges, including 
the effective delivery of therapeutic tRFs to targeted cells 
and tissues and the risk of off-target effects that could im-
pact normal cellular functions. There is a need for more 
research to establish safe and effective delivery methods 
for therapeutic tRFs and to assess their potential toxicity 
and side effects. Furthermore, the limited understanding of 
the range of tRF functions and regulatory mechanisms in 
biological processes impedes the development of targeted 
tRF-based therapies. The intricate nature of tRF-media-
ted regulatory networks and their interactions with other 
regulatory molecules and pathways necessitates further 
exploration to fully realize the potential of tRFs in cancer 
diagnosis and treatment. 
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