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Abstract

The survival of Antarctic flora under ozone depletion depends on their ability to acclimate against increasing UV-B radiation 
by employing photo protective mechanisms either by avoiding or repairing UV-B damage. A fifteen days experiment was 
designed to study moss (Bryum argenteum) and lichen (Umbilicaria aprina) under natural UV-B exposure and under UV 
filter frames at the Maitri region of Schirmacher oasis, East Antarctica. Changes in UV absorbing compounds, phenolics, 
carotenoids and chlorophyll content were studied for continuous fifteen days and significant changes were observed in the 
UV exposed plants of B. argenteum and U. aprina. The change in the UV absorbing compounds was more significant in B. 
argenteum (P<0.0001) than U. aprina (P<0.0002). The change in phenolic contents and total carotenoid content was signifi-
cant (P<0.0001) in both B. argenteum and lichen U. aprina indicating that the increase in UV absorbing compounds, phenolic 
contents and total carotenoid content act as a protective mechanism against the deleterious effect of UV-B radiations.
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INTRODUCTION

Antarctica is the coldest, driest continent and plants that 
grow are capable of withstanding severe desiccation. So-
lar radiation is essential for photosynthesis and growth of 
plants. Although solar radiation in the visible region drives 
photosynthesis, absorptance of high levels of visible radia-
tion and radiation at other wavelengths can be damaging. 
At shorter wavelengths, absorbed UV-B (280-320 nm) 
radiation can cause lesions to nucleic acid and proteins. 
Depletion of stratospheric ozone, resulting from anthropo-
genic activities, atmospheric pollution has led to increased 
ultraviolet (UV-B) radiation at the Earth’s surface, as well 
as a spectral shift to the more biologically damaging shor-
ter wavelengths (7). The decrease in ozone has been most 
pronounced and consistent over Antarctica with record 
levels of austral ozone depletion in the last decade (4, 11, 
13, 16). As a consequence, Antarctica now experiences 
unseasonably high UV-B radiation through much of the 
spring, caused by the combined effects of the ‘ozone hole’ 
and the approach of the natural annual radiation peak, the 
summer solstice (19). Recovery of the Antarctic ozone 
hole is currently predicted by 2050, but remains a topic of 
intense research interest. Lichen and moss are desiccation 
and freezing tolerant, and able to survive frozen beneath 
snow during the long polar winter. The emergence from 
snow and the start of the short growing season currently 
coincides with peak levels of UV-B radiation due to ozone 
depletion. Moss may be particularly susceptible to UV-B 
damage because of their simple structure, with most lac-
king differentiation and the protective cuticle or epidermal 
layer of higher plants. Combined with the physiologically 
stressful effects of repeated freeze/thaw cycles, an intermit-
tent water supply and limiting nutrients, polar bryophytes 
are likely to be sensitive to the additional stress imposed 
by elevated UV-B radiation (23, 24). UV-B absorbing pig-
ments are widespread across the plant kingdom, due to 

their ability to absorb biologically damaging UV-B radia-
tion while transmitting essential photo synthetically active 
radiation (6). A meta-analysis of field studies revealed the 
most striking and consistent response of plants to increased 
UV-B radiation resulting in increase of UV-B absorbing 
pigments, on average by 10% (21). In this study we have 
investigated two Antarctic plants B. argenteum and U. 
aprina under natural environmental conditions including 
the UV-B radiation and under UV-B filter cover with the 
main objectives to understand the changes in UV absor-
bing compounds, phenolic content, chlorophyll content 
and carotenoids under the effect of UV-B radiations. The 
present paper shows that these plants experienced a quan-
titative increase of UV absorbing compounds, carotenoid, 
phenolics which collaborates the positive increase with the 
increasing UV-B radiation stress.

MATERIALS AND METHODS 

Study site and experimental set-up
The Schirmacher Oasis region of east Antarctica consists 

(Latitude: 70 Deg 45’01.65»South, Longitude: 11 Deg 
43’01.45» East) of a series of low-lying peninsulas and is-
lands, which become partially ice-free during the summer 
melt period. Screening treatments of UV-B radiation by 
UV-B filter frames were established near the Priyadarshini 
Lake and around Indian Antarctic Station, Maitri. These 
sites were chosen because the selected plant species grow 
naturally and have greater exposure to both sunlight and 
wind.

A metal frame box was designed fitted with a 12″ X 12″ 
UV filter sheet (280 to 380 nm) used to screen the UV-B 
radiation. These UV filter frames placed over B. argen-
teum and U. aprina under natural conditions other than 
UV-B radiation, served as UV unexposed condition for 
continuous study of the plant specimen over fifteen days 
of duration. A simultaneous study without UV filter frame 
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serving as UV exposed condition was carried over the 
plants from 2 January 2010 to 17 January 2010. Samples 
were randomly collected in triplicate daily from the near-
by three sites of Indian  research station “Maitri,” situa-
ted at Schirmacher Oasis, East Antarctica from both the 
specified conditions and were analysed for the changes in 
UV absorbing compounds, phenolic contents, chlorophyll 
content and carotenoids.

Figure 1. Change in UV absorbing compounds under UV exposed and 
UV unexposed conditions in B.argenteum. P<0.0001.

Extraction of pigments
For chlorophyll content estimation, 100 mg of the plant 

sample was crushed in 5ml of 80% acetone solution (80ml 
acetone finally make up to 100 ml with distilled water) at 
4°C and  spin in centrifuge at 10,000 rpm for 10 minutes. 
Supernatant was taken and optical density (O.D) was mea-
sured at 663nm, 645nm, 510nm for chlorophyll a, chloro-
phyll b and carotenoids respectively (1).

For UV absorbing compounds 5 ml of acidified metha-
nol (MeOH : HCl: H2O 90 : 1 : 1) was taken and 100 mg of 
plant sample was heated at 60°C and stirred for 10 minutes 
in 25 ml flask. It was cooled at room temperature for 15 
minutes and filtered through Whatman paper no. 5 and 
absorbance was recorded at 300 nm (17).

For phenolic content study the 100 mg of plant sample 
was homogenised (10% w/v) in acidified methanol (50% 
methanol 0.05 % HCl, pH 3.5). Homogenate allowed to 
settle for 15 h in dark at 0-4°C and filtered through What-
man paper no. 5 and absorbance recorded at 280 nm (15).

Statistical analyses
The statistical analyses of the data was performed by 

using graph pad Prism version 3.0. For the chlorophyll 
and pigment data of the UV exposed and UV unexposed 
experiment, two way ANOVA was used. Treatment effects 
were considered significant at the P <0.05 level.

Figure 2. Change in phenolic contents under UV exposed and UV 
unexposed conditions in B.argenteum. P<0.0001.

RESULTS 

The change in the UV absorbing compounds, phenolics 
and carotenoids was significant in B. argenteum and U. 
aprina. The change in the UV absorbing compounds was 
more significant in B. argenteum (P<0.0001) than lichen 
U. aprina (P<0.0002). UV absorbing compounds in B. 
argenteum gradually increased from initial concentration 

Plant 

Chl. a

mg/gm fresh wt (Mean value ±S.D)

Chl. b

mg/gm fresh wt (Mean value ± S.D)
Day 1 Day 7 Day 15 Day 1 Day 7 Day 15

B. argenteum 0.137 ± 0.002 0.132 ± 0.003 0.126 ± 0.001 0.060 ± 0.128 0.053 ± 0.064 0.046 ± 0.045

U.  aprina 0.142 ± 0.003 0.138 ± 0.002 0.132 ± 0.003 0.040 ± 0.041 0.033 ± 0.066 0.020 ± 0.060

Table 1. Concentration of chlorophyll a and chlorophyll b under UV exposed conditions at Maitri, East Antarctica.

Table 2. Concentration of chlorophyll a and chlorophyll b under UV Filter frame conditions at Maitri, East Antarctica.

Plant 

Chl. a

mg/gm fresh wt (Mean value± S.D)

Chl. b

mg/gm fresh wt (Mean value ± S.D)
Day 1 Day 7 Day 15 Day 1 Day 7 Day 15

B. argenteum 0.140 ± 0.003 0.146 ± 0.001 0.151 ± 0.002 0.060 ± 0.146 0.066 ± 0.144 0.071 ± 0.001

U. aprina 0.141 ± 0.002 0.149 ± 0.001 0.150 ± 0.002 0.040 ± 0.002 0.046 ± 0.002 0.058 ± 0.003
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of 0.175 mg/gm fresh wt. /ml at day 1st to 0.205 mg/gm 
fresh wt. /ml on day 15th under UV exposed condition and 
decreased to 0.151 mg/gm fresh wt. /ml on day 15th under 
UV unexposed condition. In U. aprina an increase in UV 
absorbing compounds were recorded from initial concen-
tration of 0.176 mg/gm fresh wt. /ml at day 1st to 0.203 mg/
gm fresh wt. /ml on day 15th under UV exposed condition 
and decreased to 0.145 mg/gm fresh wt. /ml on day 15th 
under UV unexposed condition.

Figure 3. Change in total carotenoids content under UV exposed and 
UV unexposed conditions in B.argenteum. P<0.0001.

Figure 4. Change in UV absorbing compounds  under UV exposed and 
UV unexposed conditions in U. aprina. P< 0.0002.

The change in phenolic contents and total carotenoid 
content was significant P<0.0001 in both B. argenteum and 
U. aprina. Phenolic contents in B. argenteum increased 
from initial concentration of 0.168 mg/gm fresh wt. /ml at 
day 1st to 0.194 mg/gm fresh wt. /ml on day 15th under UV 
exposed condition and decreased to 0.147 mg/gm fresh 
wt. /ml on day 15th under UV unexposed condition. In U. 
aprina, phenolic contents increased from initial concentra-
tion of 0.142 mg/gm fresh wt. /ml at day 1st to 0.172 mg/
gm fresh wt. /ml on day 15th under UV exposed condition 
and decreased to 0.114 mg/gm fresh wt. /ml on day 15th 
under UV unexposed condition. Change in total carotenoid 
in B. argenteum was from initial concentration of 0.210 
mg/gm fresh wt. /ml at day 1st to 0.242 mg/gm fresh wt. /
ml on day 15th under UV exposed condition and decreased 
to 0.177 mg/gm fresh wt. /ml on day 15th under UV unex-
posed condition. In U. aprina total carotenoids increased 
from initial concentration of 0.135 mg/gm fresh wt. /ml at 
day 1st to 0.165 mg/gm fresh wt. /ml on day 15th under UV 
exposed condition and decreased to 0.135 mg/gm fresh wt. 
/ml on day 15th under UV filter condition.

The change in the chlorophyll were not considerable in 

both plants which clearly indicates that the increase in UV 
absorbing compounds, phenolic contents and total caro-
tenoid content act as a protective mechanism against the 
deleterious effect of UV-B radiations.  The change in chlo-
rophyll a and chlorophyll b is summarized in table 1 and 2. 
Results are represented in Fig. 1 to 6.

Figure 5. Change in phenolic contents under UV exposed and UV 
unexposed conditions in U. aprina. P<0.0001.

Figure 6. Change in total carotenoids content under UV exposed and 
UV unexposed conditions in U. aprina. P<0.0001.

DISCUSSION

In present study we observed that the chlorophyll content 
experienced insignificant changes under UV exposed and 
UV unexposed conditions. Changes in chlorophyll have 
been observed in some species but are not a consistent 
response to natural variations in UV-B exposure, although 
they have previously been observed in Arctic bryophytes 
in response to enhanced UV-B radiation (21, 8, 5). No 
change in chlorophyll concentration was observed as a 
result of seasonal changes in UV-B radiation in either the 
South American Sphagnum magellanicum (22) or two An-
tarctic bryophytes studied by Newsham et al. (14).

Carotenoid synthesis is known to be induced by expo-
sure to UV-B radiation (6). Carotenoids are considered 
to act as protective pigments which form a cover around 
the plants photo system to protect it from any damage 
under stress conditions. The data from the present study 
indicate that carotenoid concentration positively associa-
ted with increases in UV-B radiation arising from ozone 
depletion, corroborating the data of Xiong and Day (25), 
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who showed increased concentrations of these pigments in 
foliage of Colobanthus quitensis and Deschampsia antarc-
tica plants exposed to near-ambient solar UV-B, compared 
with plants exposed to reduced UV-B. Similarly, increased 
carotenoid concentrations have been found in foliage of 
the bryophytes Cephaloziella exiliflora and Sanionia unci-
nata at Rothera Point during periods of ozone depletion.

UV-B absorbing pigments are widespread across the 
plant kingdom, due to their ability to absorb biological-
ly damaging UV-B radiation while transmitting essential 
photo synthetically active radiation (20). The concentra-
tion of UV-B absorbing compounds increased significantly 
when studied under UV exposed condition as compared to 
those studied under UV unexposed condition. The increase 
in the UV-B absorbing compounds is positively associated 
with the UV-B exposure. Antarctic field experiments have 
shown increased concentrations of UV-B screening pig-
ments in foliage of the pearlwort C. quitensis and the grass 
D. antarctica exposed for four months to near-ambient 
solar UV-B radiation under plastic screens on the western 
Antarctic Peninsula, compared with plants exposed to re-
duced UV-B radiation (18). The widespread accumulation 
of UV-B screening pigments in plant tissues in response to 
UV-B radiation owes at least in part to flavonoid synthesis, 
caused by the induction of genes encoding chalcone syn-
thase, a key enzyme in the flavonoid biosynthesis pathway 
(10).

Some of the indirect effects relate to physiological and 
ecological functions of various protective absorbing (poly) 
phenolics, whose production is induced by UV-B, in ad-
dition to other environmental factors. These form part of 
the phenyl propanoid pathway (2, 20, 3). In our study the 
change in the phenolic content was significantly increasing 
in B.argenteum and U. aprina which clearly indicates that 
under the effect of UV-B the production of phenolics is 
induced. Solar UV-B radiation is known to stimulate the 
synthesis of the enzymes phenyl alanine ammonia lyase 
(PAL) and chalcone synthase (CHS) and other branch-
point enzymes of the phenylpropanoid pathway (9). PAL 
catalyzes the transformation of phenylalanine into trans-
cinnamic acid, which is a central intermediate in the for-
mation of complex phenolic compounds such as flavo-
noids, condensed tannins and lignin (12). These UV-B fil-
ters prevent UV-B damage to the DNA and other targets in 
the plants, in addition to photo-reactivation and dark repair 
processes.
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