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1. Introduction
Fluid suction devices are vital in the variability of me-

dical operations, mostly those covering surgery and wound 
care, as they aid in posit surplus fluids, blood, and other 
waste. But if not thoroughly emboldened and disinfected, 
these gadgets can turn to convert havens for bacteria. Pa-
tients may turn out contaminated and cultivate infections 
due to the warm, humid environment that fosters bacterial 
growth inside the suction tubes and canisters. 

Typical devices that contain Pseudomonas aeruginosa 
[1] Staphylococcus aureus antibiotics [2] According to 
Kaper et al. [3], Escherichia coli can contaminate medical 
equipment in hospitals and Klebsiella pneumoniae [4].

Hospitals often have infections from fluid suction 
equipment and the tubing that supports them when per-
forming procedures. These gadgets include organic matter 

and liquids that foster the growth of bacteria, such as P. 
aeruginosa, which can lead to serious infections, particu-
larly in those with reduced immune systems [5].

Meanwhile, P. aeruginosa has a history of resistance to 
traditional antibiotics, and attention to the discovery of al-
ternate therapy is increasing [6]. Microbes utilize various 
substrates as raw materials to produce a range of biolo-
gical products, including enzymes, proteins, antioxidants, 
and pigments [7].

Enterococci are Gram-positive, facultatively anaerobic 
lactic acid bacteria located in the gastrointestinal tracts of 
humans and animals, as well as in dietary and environmen-
tal settings [8, 9]. Enterococci are a category of microorga-
nisms that may be quite beneficial in applications of food. 
Through the processes of lipolysis, proteolysis, and citrate 
and pyruvate metabolism, enterococci enhance the flavor 
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and texture of fermented dairy products. Moreover, they 
create bacteriocins, which help these products last longer 
on the shelf [10].

The term bacteriocin is also employed to encompass 
microbiome-derived antimicrobial molecules, such as 
non-ribosomally synthesized peptides [11]. Bacteriocins 
are classified into three categories: class I, comprising an-
tibiotic families; class II, consisting of small non-modified 
peptides; and class III, which includes larger heat-labile 
proteins [12].

Bacteriocins can exhibit many mechanisms of action, 
such as inhibiting cell wall construction, exerting effects 
via DNase and RNase activities, and more commonly, 
creating pores in the target cell membrane [7, 13]. Ente-
rococci synthesize bacteriocins, also known as enterocins. 
Enterocins are classified into four types: class I lantibio-
tics, class II non-lantibiotics, class III cyclic enterocins, 
and class IV high molecular weight proteins. Franz et al. 
[14] divide Class II into three subclasses: IIa is made up 
of pediocins, IIb doesn't have a leader peptide, and IIc is 
made up of other linear enterocins that aren't pediocin-
like. The main Enterococcus spp. that output bacteriocins 
are E. faecalis and E. faecium. However, representatives 
of the E. mundtii species have also been discovered to pro-
duce bacteriocins.

Researching replacement antimicrobial treatments is 
vital for stopping infections linked to devices. Favorable 
strategies for tackling this trouble include bacteriophage 
virals that infect bacteria and bacteriocins antibacterial 
proteins made by bacteria such as Enterococcus [15]. 

Mostly, bacteriocins have demonstrated promise as 
vital protectors of the gastrointestinal system, presenting 
fresh avenues for successfully managing resistant bacteria 
in medical settings.

The study aims to purify enterocin from Enterococ-
cus faecium, depict its physical and chemical characteris-
tics, and test its antibacterial activity anti-P. aeruginosa 
strains extracted from surgical suction device tubes are the 
objectives of this study. To get better hygienic and safety 
procedures, this study looks into enterocin as a probable 
antibacterial worker to lessen bacterial contamination in 
surgical environments.

2. Methods and Materials 
2.1. Isolation and identification of P. aeruginosa 

Identifying clinical isolates of P. aeruginosa The 
Vitek2E compact system was used to identify sixteen P. 
aeruginosa isolates that were taken from a suction device 
used during surgeries at Al-Yarmouk Hospital.

2.2. Antibiotic susceptibility testing
An Atest for sensitivity of antibiotics was conduc-

ted to assess the susceptibility of P. aeruginosa isolates 
to various antibiotics, specifically CAZ, CL, TCC75/10, 
LEV, and PL. The disc diffusion method was employed to 
conduct an antibiotic sensitivity test. The assessment was 
conducted in accordance with the guidelines set forth by 
the Clinical Laboratory Standards Institute [16].

2.2.1. Bacterial isolation and identification of Entero-
coccus 

E. faecium is isolated. Isolates of enterococci from heal-
thy people's feces. The isolates were made by suspending 
one gram of excrement in two milliliters of 0.85% saline, 

spreading the mixture on Brain Heart Infusion agar, and 
then classifying the mixture according to its biochemical 
characteristics (API 20 Strep, bioMerieux France). They 
were incubated for 24 hours at 37°C after being cultured 
as usual in BHIB (Oxoid). The same medium with 20% 
(w/v) glycerol was used to keep all cultures alive at -80°C. 
Biochemical characteristics (API 20 Strep, bioMerieux 
France). Cultivation occurred in BHI broth (Oxoid) with 
incubation at 37°C for 24 hours. All strains were preserved 
in a medium containing 20% (w/v) glycerol at -80°C.

2.3. Detection of Enterococcus bacteriocin
We applied the agar well diffusion method to evaluate 

the creation of E. faecium bacteriocins [17].

2.4. Enterococcus bacteriocins activity assay
Using the good diffusion assay and Mahdi's [18] re-

commended technique, the antibacterial activity of entero-
cin LHMG was assessed.

2.5. Assessment of protein concentration
The protein concentration was measured using the 

Lowry et al. [19] method.

2.6. Synthesis of crude enterocin
E. faecium no. 6 was employed to produce crude en-

terocin. To purify against denaturant proteases and heat-
labile proteins, crude enterocin extract (CEE) was heated 
at 80°C for 10 minutes, following the methodology esta-
blished by Powell et al. [20].

2.7. Purification of Enterococcus bacteriocins
Purification of Enterocin from E. faecium Phase separa-

tion was achieved by thoroughly mixing enterocin, found 
in the supernatant fractions, with n-butanol at a 1:1 ratio, 
followed by purification using an ion exchange column 
(DEAE cellulose column) as outlined by Mahdi et al. [21]. 
The concentration of protein at each step was quantified 
using the Bradford method.

2.8. Description of produced bacteriocins
Description of the generated bacteriocins included de-

termining the weight of molecular and investigating the 
effects of pH, temperature, and enzymes, on bacteriocins.

2.8.1. Bacteriocin molecular weight determination 
The molecular weight of the bacteriocin was determi-

ned using an ion exchange column (DEAE cellulose co-
lumn) based on the principles outlined by Whitaker and 
Bernhard [22]. The molecular weight of the generated bac-
teriocins was assessed using Tricine-SDS-Polyacrylamide 
gel electrophoresis.

2.8.2. pH Effectiveness on bacteriocins
The impact of pH on Enterococcus bacteriocins was as-

sessed through the agar well diffusion method, utilizing S. 
aureus and P. aeruginosa as reference strains. The strains 
were sourced from the College of Sciences at Mustansi-
riyah University [23].

2.8.3. Temperature Effectiveness on bacteriocins
Temperature effectiveness on bacteriocins was evalua-

ted by incubating them at different temperatures, as des-
cribed by Mahdi et al. [23], and then assessing the residual 
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(6 out of 15) contained bacteria that were susceptible to 
antibiotic PEN, which showed the maximum sensitivity. 
As can be seen from (Fig. 1).

Other antibiotics (CL, CAZ, and TIT/CLA) showed 
total resistance in all isolates under examination. These re-
sults show how differently bacteria react to antibiotics and 
emphasize how important it is to test for bacterial suscep-
tibility to guide effective treatment efforts. This is a crucial 
step in determining effective clinical therapy (Fig. 1).

3.3. Isolation and identification of E. faecium 
The Vitek system, biochemical testing, and culture 

were used to examine 100 stool samples taken from heal-
thy people. Fifty of the samples tested positive for Entero-
coccus species. Of these, 26 were well-known as E. faeca-
lis and 24 as E. faecium. This study, which used thorough 
microbiological techniques for microbial identification, 
emphasizes the predominance of Enterococcus species in 
stool samples from healthy people (Table 2).

3.4. Detection of Enterocin GH production
All of the acquired E. faecium isolates could form ente-

rocin, according to the results of the bacteriocin produc-
tion screening. When enterocin was purified, E. faecium 
number 6 was used as the enterocin producer because it 
was the best isolate for producing enterocin. Enterocin is 
the term for the bacteriocin that is thus generated.

3.5. Purification of Enterocin GH 
Bacteriocins were purified using ion exchange tech-

niques. The overall yield and activity are summarized in 

activity.

2.8.4. Effectiveness of enzymes on bacteriocin
Following the incubation of the bacteriocin with va-

rious enzymes (lipase, α-amylase, catalase, proteinase E, 
and Proteinase K) at 30°C for one hour, the enzymes were 
subsequently inactivated by heating at 100°C for three 
minutes. The residual enzyme activity was subsequently 
assessed [24]. 

2.9. Crude and purified bacteriocins antibacterial acti-
vity 

Mahdi et al. [25] demonstrated the antibacterial effica-
cy of crude and purified bacteriocin against P. aeruginosa 
at a concentration of 32 μg/ml in Ref. 

2.10. Antibacterial activity of Enterocin GH and Peni-
cillin against P. aeruginosa in the tube of the suction 
machine 

To cause biofilm formation on urinary catheters, a mo-
dified version of the Jones and Versalovic [26] approach 
was used. 1 cm long tube of suction machine segments 
were inserted into 10 milliliters of BHIB containing 1.5 
\times 10^8 CFU/ml of P. aeruginosa strain no. 6. Over 
24 hours, the setup was aerobically incubated at 37°C. 
Decantation was used to remove the media and planktonic 
cells, and distilled water (DW) was used twice to wash 
the tube fragments. A second 24-hour incubation was then 
conducted after adding 200 µl of BHIB mixed with Ente-
rocin GH and Penicillin (32 µg). Tube of suction machine 
fragments were incubated for 30 minutes before being 
dried and twice cleaned with DW. The samples were then 
processed for inspection using atomic force and stained 
with gold. Sterile BHIB with a tube of suction machine 
pieces served as blank controls, and a bacterial culture free 
of bacteriocin was also prepared.

2.11. Analysis of statistical data
The simple one-way analysis of variance, or ANOVA, 

method was utilized to assess intergroup variation. The 
significance level was established at P<0.05. The statis-
tical software Sigma State was utilized to do the one-way 
analysis of variance.

3. Results
3.1. Isolation of P. aeruginosa 

Among the 70 samples analyzed from surgical suc-
tion device tubes, P. aeruginosa was the most predomi-
nant bacterium isolated, comprising 21.43% of the overall 
isolates. Following P. aeruginosa, other isolated bacteria 
involved S. aureus (7.14%), Proteus mirabilis (14.29%), 
E. coli (12.86%), and K. pneumoniae (15.71%). These fin-
dings underline the predominance of P. aeruginosa in the 
sampled surgical environments, emphasizing the critical 
need for infection control measures to mitigate bacterial 
contamination (Table 1).

3.2. Antibiotic susceptibility test for P. aeruginosa iso-
lates

Strict protocols were followed to assess the antibiotic 
susceptibility of bacteria isolated from 15 samples. Accor-
ding to the data, bacteria in 60% of the samples (9 out of 
15) showed resistance to antibiotic PEN, which was also 
the most resistant. On the other hand, 40% of the samples 

Fig. 1. P. aeruginosa isolates resistance toward Antibiotics.

Bacterium No. %
Pseudomonas aeruginosa 15 21.43%
Staphylococcus aureus 5 7.14%
Proteus mirabilis 10 14.29%
Escherichia coli 9 12.86%
Klebsiella pneumoniae 11 15.71%

Table 1. The most predominant bacterium isolated from surgical 
suction device tubes.

Isolation from stool samples No. %
Enterococcus faecalis 26 52%
Enterococcus faecium 24 48%

Table 2. The predominance of Enterococcus species in stool samples 
from healthy people.
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Table 3 and Fig. 2.

3.6. Characterization of Enterocin GH
The characterization of Enterocin involves determining 

its molecular weight and examining the effects of pH, tem-
perature, and five enzyme types on the activity of crude 
Enterocin.

3.6.1. pH stability for Enterocin GH 
The activity of Enterocin GH remained stable at pH 

values 2 to 9. However, at pH 2, Enterocin GH lost 80% 
of its activity, and at pH 9, it lost 60% of its activity. This 
indicates that Enterocin GH is sensitive to alkaline condi-
tions (Fig. 3).

3.6.2. Effect of temperature on Enterocin GH
E. faecium Enterocin GH was incubated for 15 minutes 

at 25, 30, 37, 40, 45, 50, 60, 70, 80, 90, 100, and 121°C to 
assess the influence of temperature. The indicator isolates 
were then used to measure any residual activity (Fig. 4). 

3.6.3. Sensitivity Enterocin GH to some enzymes
Enterocin GH was inactivated upon exposure to proteo-

lytic enzymes (proteinase K and proteinase E), although 
it remained active when subjected to α-amylase, catalase, 
and lipase (Fig. 5).

3.7. Molecular weight of enterocin GH
The molecular weight of the enterocin GH protein was 

determined using SDS-PAGE gel electrophoresis (Fig. 6). 
Two protein bands were detected following Coomassie 
Blue staining.

3.8. Antibacterial activity of crude and purified Ente-
rocin GH against P. aeruginosa

Table 4 illustrates the modification of the agar-well dif-
fusion technique to assess the inhibitory effect of basic and 
cleansed Enterocin GH on P. aeruginosa isolates. At a do-
sage level of 32 mg/ml, the inhibiting region of crude ente-

Fig. 3. Stability of Enterocin GH at different pH values.

Step V (ML) Activity (AU/ML) Protein concentration 
(mg/ml) 

Specific activity 
(U/mg) Total activity Fold Yield

Crude 250 125 0.32 124.68 31250 1 100
Butanol 1:1 35 450 0.16 449.84 15750 3.60 50.4
Ion exchange 30 400 0.084 4761.9 12000 38.19 38.4

Table 3. Purification steps of bacteriocins produced by Enterococcus faecium isolate.

Fig. 4. Effectiveness of diverse temperatures on the activity of puri-
fied Enterocin GH.

Fig. 5. Effectiveness of diverse enzymes on the functions of cleansed 
Enterocin GH.

Fig. 2. Ion exchange chromatography of purified Enterocin GH.

Enterocin GH Concentration of 
treatment (µg/ml)

Zone of inhibition 
(Mean ± SD)

Crude 32 34.67 ± 0.57
Purified 32 35.67 ± 0.57
Control (D.W.) 0 0±0
P-value 0.0019

Table 4. The modification of the agar-well diffusion technique to 
assess the inhibitory effect of basic and cleansed Enterocin GH on P. 
aeruginosa isolates.
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rocin GH was measured at 34.67 ± 0.57, while the zone of 
the inhibition of purified enterocin GH was measured at 
35.67 ± 0.57. Both crude and purified enterocin GH de-
monstrate antibacterial activity against P. aeruginosa iso-
lates; however, purified enterocin GH shows significantly 
greater antibacterial activity compared to crude enterocin 
GH (p<0.05) (Fig. 7; Table 5).

3.9. Antibiofilm activity of Enterocin GH and Penicillin 
against P. aeruginosa in a tube of a suction machine

The findings from the atomic force microscope (AFM) 
analysis of biofilm growth on the surfaces of tube suction 
machines are summarized as follows: 
Group A (No treatment or bacteria): The surface height 
of the tube measured 8.1 nm.
Group B (P. aeruginosa alone, untreated): The surface 
height of the tube increased to 36.8 nm.
Group C (P. aeruginosa treated with the antibiotic pe-
nicillin): The surface height was recorded at 17.5 nm.
Group D (P. aeruginosa treated with Enterocin GH): 
The surface height was further reduced to 12.0 nm.
These results indicate that Enterocin GH is a more effec-
tive antibiofilm agent compared to penicillin, as illustrated 

in Figures 8 and 9. This revision enhances readability and 
ensures that the information is presented in a clear, orga-
nized manner.

Fig. 6. Enterocin Tricine-SDS-Polyacrylamide gel electrophoresis (a 
method used for the separation of proteins based on their size and 
charge); Lane M: proteins markers; Lane 1: Enterocin (6 kDa).

Isolates Crude Purified
1 25 28
2 26 28
3 33 35
4 28 30
5 32 34
6 35 36
7 34 35
8 20 28
9 33 34
10 35 35
11 30 33
12 26 30
13 34 35
14 30 32
15 32 34

Table 5. Crude and purified bacteriocins' antibacterial activity anti-
Pseudomonas aeruginosa.

Fig. 7. Crude and purified bacteriocins' antibacterial activity anti-
Pseudomonas aeruginosa. Well One: Control, well Two: Crude En-
terocinGH, and well Three: Purified EnterocinGH on P. aeruginosa 
isolates.

Fig. 8. Atomic force micrograph of P. aeruginosa biofilm roughness 
analysis before treatment. A: control negative and B control positive.
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Fig. 9. Atomic force micrograph of P. aeruginosa biofilm roughness 
analysis after treatment: C group treatment with Enterocin GH and D 
group treatment with penicillin antibiotic.
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4. Discussion 
In a study of 70 surgical suction device tube samples, P. 

aeruginosa accounted for 21.43% of all isolates, making 
it the most common bacteria. It is common in healthcare 
environments and very resistant to antibiotics, especially 
carbapenems [27].

P. aeruginosa's capacity to form biofilms boosts its 
resistance to antibiotics and disinfectants, creating it a 
persistent threat in surgical settings. The biofilms shield 
the bacteria, increasing their survivability and making ill-
nesses harder to treat. This bacterium is a significant cause 
of nosocomial infections, especially in intensive care 
units, and is frequently involved in hospital outbreaks. 
Strict infection control measures are crucial, according to 
recent studies [28, 29].

P. aeruginosa has a multidrug susceptibility phenotype, 
as exposed in a novel study by Khadhom [30] in Iraq, as 
well as in this work and another investigation by Hirsch 
and Tam [31] action it challenging to treat this bacterium 
in addition to its significance biofilm development. Prior 
research has indicated that P. aeruginosa isolates can de-
velop biofilm on surfaces such as stainless steel and cera-
mic [32-34]. Consequently, researchers are trying to iden-
tify a substitute for common antibacterial drugs [35, 36]. 
Research conducted by Al-Samaree and Al-Khafaji [37] 
indicates that the resistance to amikacin among Iraqi iso-
lates is relatively low, as demonstrated in this study. 

LAB are Gram-positive, catalase-negative, non-spore-
forming bacteria that exhibit high pH tolerance. Lac-
tic acid is produced from glucose along with inhibitory 
substances akin to bacteriocins, hydrogen peroxide, and 
diacetyl, which serve to prevent food spoilage [38]. This 
experiment's results indicate the presence of bacteriocin-
producing LAB in colostrum samples from sheep [39] and 
goats [40]. E. faecium and other gram-positive lactic acid 
bacteria exhibit optimal growth on MRS media, which is 
specifically formulated to enhance the proliferation of lac-
tic acid bacteria at a pH of approximately 5.7. Common 
media utilized for the cultivation of lactic acid bacteria 
comprise glucose, yeast peptone (GYP), tryptone glucose 
yeast extract (TGE), and MRS medium [41].

In dairy products, and other ecological niches, entero-
cocci are attending and are well-known to contribute to the 
organoleptic properties of the product [42]. Additionally, 
it is known that they generate one or more bacteriocins, 
which inhibit a variety of foodborne pathogens, such as 
Listeria species [43]. 

According to Corr et al. [44] and Ness et al. [43], this 
characteristic may affect niche competition and help regu-
late pathogen infections.

E. faecium sp. is the source of enterocins, which are 
potent reducing agents that stop the growth of E. coli and 
Salmonella strains [45].

E. faecium accounted for around half of the stool iso-
lates in this investigation. All the isolates could produce 
enterocin GH, although the capacity was diversified. The 
early step in identifying bacteriocin-producing strains is 
to screen and select those that generate an inhibition zone 
against anti-indicator bacteria. To achieve this objective, 
direct or indirect methods may be employed to identify 
strains that produce bacteriocins. The determination of 
bacteriocin production involves the observation of inhi-
bition zones formed by the strains against anti-indicator 
bacteria. The presence of a distinct and well-defined inhi-

bition zone surrounding the colony or well suggests that 
the bacteria under examination are likely to produce bac-
teriocins [46].

Generality E. faecium strains produce bacteriocins that 
belong to subclasses IIa, IIb, and IId. Since most bacte-
riocins are thermally stable, heat treatments to food won't 
harm them. Certain devices can function at low pH and 
temperatures, making them potentially valuable in the pro-
cessing of food and low-temperature applications [47].

These features were common to many of the enterocins 
that have previously been identified, including enterocin 
A [48], enterocin B [49], enterocin P [50], and enterocin 
1071A and 1071B, generated by E. faecalis [51].

The stability of these enterocins is crucial because they 
are used for preserving fermented foods. Their antimi-
crobial activity decreases after treatment with proteolytic 
enzymes, indicating that they are protein-based. These 
enterocins are classified as class 2a and have a molecular 
weight under 10 kDa [52]. 

A lot of the gram-positive bacteria are susceptible to 
the broad inhibitory spectrum displayed by several Ente-
rocin and other members of the pediocin-like family of 
bacteriocins [48-50]. Together with S. paratyphi, L. mo-
nocytogenes strains L. plantarum, L. innocua, S. typhi, 
and E. faecalis, our bacteriocin also significantly reduced 
these activities. Certain strains of Enterococcus bacte-
ria were found to be susceptible to our bacteriocin, even 
though Gram-negative bacteria are typically thought to be 
resistant to numerous bacteriocins from these strains. Cer-
tain LAB bacteriocins, particularly the class 2 bacteriocin 
pediocin, have been found in some reports to support the 
inhibition of a limited number of Gram-negative bacteria, 
such as Shigella sp., Salmonella sp., Pseudomonas, and 
Shigella flexneri [53].

E. faecium strain screening the best crude and purified 
antimicrobial activities’ spectrum as each of those had ac-
tivity against multidrug-resistant P. aeruginosa. 

Enterocin GH may act anti-bacteria by interfering with 
vital metabolic processes or by rive the integrity of cell 
membranes. The antibacterial activity of purified Entero-
cin GH is higher than that of crude formula. This results 
from the purification process's elimination of impurities 
and inactive ingredients, which concentrates the active 
bacteriocin molecules that reign antibacterial activity [54]. 

Antimicrobial activity appraisal is commonly done 
using the agar well diffusion method, which was utilized 
in this work. To measure the amount of bacterial inhibi-
tion, wells containing bacteriocin were placed on agar 
plates that were injected with bacteria. The diameter of the 
clear zone surrounding the well reflects this [55]. 

The results further corroborate the findings of Cintas et 
al. [50] and Lemos Miguel et al. [56] regarding the antimi-
crobial efficacy of enterocin P against these bacteria.

The inhibitory zone widths of crude and pure Ente-
rocin GH differ significantly (p<0.05), emphasizing the 
practical implications for food safety and pharmaceutical 
applications. Because of their increased specific activity 
and stability, purified bacteriocins are more effective and 
dependable when used as natural preservatives or medici-
nal agents [57].

Research indicates that bacteriocins typically cause 
hole expansion and cell lysis by attaching to certain recep-
tors on bacterial membranes [58].

The antibiofilm properties of Penicillin and Enterocin 
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GH anti-P. aeruginosa biofilms on suction machine tubes 
are assessed in this work. The habit of biofilm on these 
tube surfaces was investigated using atomic force micros-
copy (AFM). Enterocin GH may have a stronger potential 
to enter and breach biofilms, as seen by the larger drop in 
surface height visible in Group D rather than Group C. The 
ability of bacteriocins, such as Enterocin GH, to breach 
bacterial cell membranes more effectively than conventio-
nal antibiotics is consistent with Cotter et al. [58].

According to the research, enterocin GH may be a 
powerful treatment for medical device-related infections, 
which are over and over made worse by the expansion 
of biofilm. The capacity of Enterocin GH to efficiently 
decrease biofilm development on suction machine tubes 
underscores its potential as a useful therapeutic alternative 
since biofilm-associated infections are known to be chal-
lenging to treat [59].

Atomic Force Microscopy (AFM) on Foley catheters 
showed that E. faecalis output enterocin GLHM and de-
monstrated substantial anti-K. pneumoniae biofilm acti-
vity, according to Mahdi et al. [60].

The following heights were determined by measuring 
the catheter tubes' surfaces: Group A: 7.33 nm (control; 
neither treatment nor bacteria) Group B: 20.31 nm (exclu-
sively K. pneumoniae, untreated) - K. pneumoniae treated 
with enterocin GLHM in Group C: 7.34 

5. Conclusion
In conclusion, the study highlights the critical role of P. 

aeruginosa and E. faecium in healthcare-associated infec-
tions, emphasizing their antibiotic resistance and biofilm 
formation abilities. P. aeruginosa, the most prevalent bac-
teria isolated from surgical suction device tubes, demons-
trates significant resistance to antibiotics and disinfectants, 
posing challenges in surgical and intensive care settings. 
Further research into bacteriocin production, purification, 
and application will be crucial for developing effective 
interventions against resistant bacterial pathogens.
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