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1. Introduction
Breast cancer (BC) is a global public-health issue, with 

nearly 2.3 million new cases, and an incidence rate of 
11.7% among all cancers in 2020 [1]. Based on the expres-
sion of hormone receptors including ER, PR, and HER2, 
breast cancer has been classified into different subtypes, 
among which triple-negative breast cancer (TNBC) refers 
to the subtype lacking the expression of hormone recep-
tors and with HER2 gene amplification [2]. Clinically, 
TNBC shows aggressive and heterogeneous behavior and 
represents 15% to 20% of breast cancer cases [3, 4]. Cur-
rent treatment for TNBC mainly includes surgery, adju-
vant chemotherapy and radiotherapy; additionally, targe-
ted therapy and immunotherapy are promising therapeutic 
interventions for improving clinical response and survival 
outcomes [5]. Unfortunately, patients with TNBC have 
worst prognosis relative to those with other BC subtypes. 
Over half of TNBC patients undergo recurrence within 
the first 5 years after diagnosis, and the overall survival 
of is merely 12-18 months on average [4]. Deepening the 

understanding of the immune signature in TNBC might 
provide novel biomarkers for prognosis as well as thera-
peutic response prediction in TNBC patients.

Cancer has been increasingly recognized as an evo-
lutionary and ecological process with reciprocal contact 
between cancer cells and the tumor microenvironment 
(TME) [6]. Various cell types are found in the TME, inclu-
ding fibroblasts, endothelial cells, and immune cells, which 
secrete factors for chronic inflammation and environment, 
in which cancer cells can escape from eradication by host 
immunosurveillance [7]. TNBC is also distinguished from 
other subtypes in immunogenic characteristics with higher 
proportion of tumor-infiltrating immune cells, which are 
found to affect the TNBC progression by regulating cell 
proliferation, apoptosis and drug resistance via anti-tu-
mor activity or immunosuppression [8, 9]. The evaluation 
of tumor-infiltrating lymphocytes (TIL) is valuable for 
the prediction of prognosis in TNBC [10], and provides 
promising targeting strategy for improving the survi-
val outcome of TNBC patients. Tumor mutation burden 
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(TMB), an indicator of tumor antigenicity, is linked with 
TNBC patient prognosis, and those with high TMB show 
significantly higher 5-year survival rates relative to those 
with low TMB [11]. As TNBC is a highly heterogeneous 
malignancy, the prognosis of patients can be different in 
patients with similar clinical features, thus identification 
of the immune signature in TNBC might benefit the scree-
ning of patients sensitive to immunotherapy.

The current study explored the immune infiltration pat-
tern as well as related biomarkers in TNBC using bioin-
formatics analysis. A random forest risk model was esta-
blished, dividing patients into high or low-immune-related 
risk groups. The TIL-related differentially expressed genes 
were further screened and their biological functions and 
enriched pathways were analyzed. Furthermore, a pro-
gnostic risk model was established based on the TIL-rela-
ted differentially expressed genes. Moreover, the mutation 
characteristics of TNBC patients were explored and the 
predictive accuracy of the model was analyzed. The fin-
dings of our study are expected to provide novel insight 
into the TIL-related gene signature in TNBC and benefit 
clinical decisions.

2. Materials and Methods
2.1. Data collection

Gene expression files (read counts) with clinical 
data were downloaded from The Cancer Genome Atlas 
(TCGA)-Breast Invasive Carcinoma (BRCA) (n=1174) 
dataset using TCGAbiolinks R package. Protein-coding 
genes and TNBC samples (n=113) were filtered for further 
analysis. 

2.2. Immune score calculation and immune-related 
risk model establishment

CIBERSORT identifies the proportion of 22 immune 

cell subtypes in human by analyzing the expression matrix 
of biomarkers with a deconvolution algorithm according 
to the principle of linear support vector regression [12] and 
was adopted to calculate the immune cell infiltration levels 
in TNBC. 

RandomForest R package was adopted for construc-
ting a random forest risk model. The TNBC samples were 
randomized into a training and a validation dataset at a 
ratio of 7:3. TNBC patients were separated to the high- 
(n=56) or low-risk (n=57) group according to the median 
immune-related risk score. The baseline characteristics of 
patients in the high or low-risk groups are shown in Table 
1. Additionally, the ROC curve was applied to evaluate the 
prediction ability of this model.

2.3. Identification of TIL-related DEGs 
To find the crucial genes linked with the immune cell 

infiltration in TNBC, DEseq2 R package was used for 
screening out the DEGs between groups, under the condi-
tion of |log2FoldChange| > 1, Pvalue < 0.05. The results 
were visualized as a heatmap and volcano plot using the 
pheatmap and ggplot2 R packages, respectively. 

2.4. Enrichment analysis of the TIL-related DEGs
Gene Ontology (GO) enrichment analysis is a well-

known method for ascribing functions to genes, in terms 
of cellular components (CC), molecular functions (MF), 
and biological pathways (BP) [13]. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) is a knowledge base for 
analyzing gene functions as well as biochemical pathways 
[14]. The GO functions as well as KEGG pathways of can-
didate TIL-related DEGs were analyzed using clusterpro-
filer R package [15].

Gene Set Enrichment Analysis (GSEA) refers to a 
method for gene distribution trend assessment from a 

Characteristic High Risk Low Risk p
n 56 57

T stage, n (%) < 0.001
T1 19 (16.8%) 6 (5.3%)
T2 27 (23.9%) 46 (40.7%)
T3 9 (8%) 2 (1.8%)
T4 1 (0.9%) 3 (2.7%)

N stage, n (%) 0.912
N0 34 (30.1%) 38 (33.6%)
N1 14 (12.4%) 11 (9.7%)
N2 6 (5.3%) 6 (5.3%)
N3 2 (1.8%) 2 (1.8%)

M stage, n (%) 0.148
M0 45 (39.8%) 52 (46%)
M1 1 (0.9%) 1 (0.9%)
MX 10 (8.8%) 4 (3.5%)

Satge, n (%) 0.028
Stage I 14 (12.7%) 4 (3.6%)
Stage II 29 (26.4%) 42 (38.2%)
Stage III 10 (9.1%) 9 (8.2%)
Stage IV 1 (0.9%) 1 (0.9%)

Age, mean ± SD 54.14 ± 11.13 55.6 ± 12.44 0.514

Table 1. Baseline characteristics of TNBC patients between high or low-risk groups.
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(1) relative to the survival group (0) (Fig. 1D), and the 
ROC curve revealed an AUC of 0.86 of this model, indi-
cating the favorable prediction power of this model (Fig. 
1E).

3.2. Identification of TIL-related DEGs and potentially 
relate pathways in TNBC

With a median risk score=0.069 in this immune risk 
model, we separated 113 TNBC samples into the high or 
low-immune risk groups. A total of 243 DEGs were scree-
ned out between groups, including 128 upregulated genes 
and 115 downregulated genes (Fig. 2A-B). Moreover, as 
shown in Fig. 2A, the DEGs showed distinct expression 
patterns to distinguish the high or low immune infiltration 
risk groups.

Furthermore, enrichment analyses were conducted to 
explore the functions and related signalings in TNBC. Ac-
cording to GO enrichment analysis, DEGs were primarily 
related to biological processes including antimicrobial hu-
moral response, skeletal system development, chemokine-
mediated signaling pathway, presynapse assembly, res-
ponse to chemokine, and cellular response to chemokine. 
The enriched cell component terms of DEGs included col-
lagen-containing extracellular matrix, ion channel com-
plex, transmembrane transporter complex, and intrinsic 
component of synaptic membrane. Moreover, these DEGs 
were also found enriched in the molecular function such 
as extracellular matrix structural constituent, CXCR che-
mokine receptor binding, and cytokine activity (Fig. 2C). 
Then we conducted the KEGG analysis of the TIL-rela-
ted DEGs, and DEGs were related to interaction between 
cytokines and receptors, circadian entrainment, chemo-

priori set of genes for phenotype correlation to justify 
contribution of phenotypes [16]. We acquired the “c2.
cp.v7.2.symbols.gmt[Curated]” dataset from MSigDB 
(https://www.gsea-msigdb.org/gsea/msigdb/), and the 
clusterProfiler R package was used for GSEA under the 
condition of false discovery rate< 0.25, Pvalue < 0.05.

2.5. Prognostic risk signature construction with TIL-
related DEGs

The least absolute shrinkage and selection operator 
(LASSO) prediction model was established using the glm-
net R package [17]. The predictive accuracy of this model 
was determined by area under the ROC curves at 1, 3, and 
5 years with a timeROC R package. The survival curves 
of the TNBC patients in the high-risk or low-risk groups 
were drawn with survival R package.

2.6. Copy number variation and mutation burden ana-
lysis

Copy number variation (CNV) is the genomic struc-
tural variation causing abnormal gene copy numbers, 
such as gene amplification, gain, loss and deletion. The 
CNV data were downloaded from TCGA database using 
TCGAbiolinks package, and GISTIC2.0 analysis was then 
conducted on the GenePattern database. GISTIC2.0 cal-
culated the information on deletions and duplications by 
analyzing the CNV data of each sample. The visualization 
of the genomic mutation types and tumor mutation burden 
(TMB) in TNBC was conducted using maftools package 
in R.

2.7. Prognostic analysis and nomogram construction
Univariate cox regression was adopted for assessing the 

predictive ability of 6 hub genes, risk score of the model 
as well as the clinicopathologic features for OS in TNBC 
patients with survival package in R. Next, those statistical-
ly significant covariates were subject to multivariate cox 
regression analysis. Furthermore, a rms R package was 
adopted for the nomogram construction. Calibration plot 
was adopted to evaluate the degree of fit between estima-
tion of nomogram and actual OS probabilities. The statis-
tical significance was assessed using Wruskal-Wallis test.

2.8. Statistical analysis 
The calculation and analyses of all data were conducted 

with the R 4.0.2 software. Student t and Wilcoxon rank-
sum tests were employed for calculating the difference 
between normally or non-normally distributed variables, 
respectively. P value less than 0.05 was set as the threshold 
value.

3. Results
3.1. Establishment of immune risk model in TNBC

The immune cell infiltration level is closely associated 
with the cancer patient prognosis. CIBERSORT algorithm 
was used for calculating the immune infiltration in TNBC. 
The results indicated that T cells CD4 memory activated, 
T cells CD8, Monocytes, Mast cells resting, NK cells res-
ting, and Macrophages M2 showed high infiltration levels 
in TNBC (Fig. 1A-B). Then data were sampled and sub-
ject to cross-validation using a training dataset and a vali-
dation dataset. The random forest algorithm was applied 
for constructing an immune infiltration-related risk model 
(Fig. 1C). The risk score was elevated in the death group 

Fig. 1. Immune cell infiltration analysis in TNBC. (A) Box plot of 
the immune cell infiltration in TNBC. (B) The top 20 key immune 
cell types in the random forest model. (C) The error rate confidence 
intervals for random forest model. The whole dataset was divided into 
the training dataset and validation dataset in a ratio of 7:3. (D) The 
immune-related risk score in the survival (0) and death groups (1) in 
the prediction of intragroup data using random forest model. (E) ROC 
curve of the training dataset.
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kine or IL-17 signalings (Fig. 2D). To further reveal the 
impact of the TIL-related DEGs on TNBC development, 
GSEA revealed that these genes mainly affected the bio-
logical functions related to synaptic membrane secretory 
granule lumen, collagen-containing extracellular matrix, 
transmembrane transporter complex, ion channel complex 
(Fig. 2E-H).

3.3. Establishment of a Lasso Cox risk model with TIL-
related DEGs. 

The prognostic risk model was established based on the 
TIL-related DEGs in TNBC. Data sampling was conduc-
ted for the cross-validation of training dataset and valida-
tion dataset. Totally 6 key genes were obtained, namely 
SLITRK3, PCDHGB3, NELL2, SRRM4, ASIC2, and 
B4GALNT2, and an immune-related six-gene prognostic 
signature in TNBC was constructed (Fig. 3A-B). 

ROC curves assessed the ability of this six-gene pro-
gnostic signature for OS prediction in TNBC. As a result, 
the AUC value was 0.51, 0.76 and 0.9 at 1, 3, and 5 years, 
respectively, indicating the better ability of our model for 
the long-term survival evaluation in TNBC patients (Fig. 
3C). Additionally, KM survival analyses indicated the 
worse survival outcomes of high-risk TNBC patients, al-
beit the difference between groups did not show statistical 
significance (P=0.0744) (Fig. 3D).

3.4. Analysis of the mutation characteristics 
The relation between genomic mutation and risk score 

was explored. We found that the missense mutation was 
the major mutation type in both two risk groups. The 
mutation of top 30 genes in different TNBC samples was 
shown in the waterfall plot. The results showed top thirty 

genes with highest mutation frequency were totally the 
same in the two groups. However, the mutation types of 
these genes were different between the two groups (Fig. 
4A-D). TNBC samples in the high prognostic risk group 
showed relatively higher mutation burden. With analysis 
of GISTIC 2.0, genes with significant differences in the 
CNV were shown in the bubble plot. Genes were ranked 
by the frequency of CNV amplification or deletion, and the 
top 10 genes with the most frequently changed CNV were 
presented (Fig. 4E-F).

3.5. Clinical prognosis analysis of the six-gene prognos-
tic risk model

Univariate Cox regression analysis evaluated the rela-
tion between the hub gene expression or clinical characte-
ristics and overall survival of TNBC patients. As a result, 
higher levels of SLITRK3, NELL2, and B4GALNT2 
were associated with reduced survival of TNBC patients 
(P<0.05). Although the Hazard Ratio (HR) of the 6 hub 
genes did not show obvious increase, the elevated pro-
gnostic risk score predicted shorter overall survival of 
the TNBC patients (P<0.001) (Fig. 5A). The relation of 
risk score and different TNM stages was also analyzed, 
and the risk score showed no statistical difference between 
the T1&T2 and T3&T4 groups, between the N0&N1 and 
N2&N3 groups, or between the M0 and M1 groups (Fig. 
5B-D). For multivariate Cox regression analysis, conco-
mitant variables (P<0.1) including SLITRK3, PCDHGB3, 
NELL2, B4GALNT2 and T staging were incorpora-
ted. The results showed that these factors did not show 
independent prognostic value in TNBC (Table 2). Next, 
a nomogram was constructed using the risk factors men-
tioned above and calibration curve was generated to eva-
luate the consistency of the actual and the predicted 1-, 3-, 
and 5-year OS (Fig. 5E-F). The C-index of the model was 
0.723, which indicated great performance in the survival 

Fig. 2. Identification of TIL-related DEGs and enrichment analysis 
in TNBC. (A) Heatmap and (B) Volcano plot of the DEGs between 
high or low immune risk groups. (C) GO enrichment analysis of the 
TIL-related DEGs. (D) KEGG enrichment analysis of the TIL-related 
DEGs. (E-H) GSEA of the TIL-related DEGs.

Fig. 3. Establishment of prognostic risk model based on Lasso Cox 
regression. (A) The coefficient selection in the LASSO Cox regres-
sion model. Vertical dashed lines are plotted at the best lambda. (B) 
Ten cross-validations of adjusted parameter selection in the LASSO 
model. Each curve corresponds to one gene. (C) Time-dependent 
ROC curves showed the predictive ability of the model for survival 
outcomes of TNBC patients at 1 year, 3 years and 5 years. (D) KM 
curves showed the survival outcomes of TNBC patients in the high- or 
low-risk groups.
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prediction for TNBC patients.

4. Discussion
TILs as an immunomodulatory factor in tumor microen-

vironment (TME) regulate immune escape of tumor cells, 
affecting cancer progression. Accumulating evidence has 
revealed the role of TILs as biological prognostic biomar-
kers in TNBC [18]. In this study, we identify the immune 
infiltration pattern of the TILs in TNBC and establish an 
immune-related risk model using random forest method. 
TNBC samples were allocated to the high or low-immune 
risk groups, and a total of 243 DEGs between groups were 
identified. Based on Lasso cox regression, a 6-gene pro-
gnostic risk signature was established, with great perfor-
mance for OS prediction for TNBC.

TILs are critically involved in antitumor immunity, and 
a variety of immune cells including, B cells, NK cells, T 
cells, and others participate in the immune responses wit-
hin the TME [19]. In the current work, we investigated 
the infiltration levels of 22 types of immune cells, and 
activated CD4 memory, CD8 T cells, Monocytes, resting 
Mast cells, resting NK cells, and M2 Macrophages were 
found enriched in the tumor cells in TNBC, which are re-
ported to affect TNBC patient prognosis and response to 
therapy [20, 21], indicating the immunoreactive TME in 
TNBC. A random forest model was established to predict 
the immune infiltration risk in TNBC, and the predictive 
accuracy was confirmed by the ROC curve (AUC=0.86). 
The higher risk score indicated worse survival outcomes 
in TNBC patients. The establishment of an immune-rela-
ted risk model benefits comprehensive characterization of 
BC immune infiltrates, which may contribute to optimized 
patient selection and stratification.

Furthermore, the TIL-related DEGs were identified. 
Enrichment analyses indicated that TIL-related DEGs 
were linked with the chemokine-related signaling pathway, 
CXCR chemokine receptor binding, extracellular matrix 

Fig. 4. Mutation characteristic analysis of prognostic model. (A) The 
mutation types of the top 30 genes with the highest mutation frequen-
cy in the high-risk group. (B) Gene expression correlation analysis 
in the high-risk group. (C) The mutation types of the top 30 genes 
with the highest mutation frequency in the low-risk group. (D) Gene 
expression correlation analysis in the low-risk group. (E) CNV ana-
lysis in the high-risk group. (F) CNV analysis in the low-risk group. 
Red color indicated that the copy number increased, and blue color 
indicated that the copy number decreased.

Characteristics Total
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value
SLITRK3 113 1.025 (1.005-1.045) 0.013 0.930 (0.75-1.15) 0.507

PCDHGB3 113 1.260 (0.965-1.644) 0.089 1.332 (0.94-1.89) 0.108
NELL2 113 1.064 (1.016-1.113) 0.008 1.035 (0.95-1.12) 0.418
SRRM4 113 2.582 (0.600-11.105) 0.202
ASIC2 113 1.041 (0.979-1.107) 0.202

B4GALNT2 113 1.038 (1.008-1.070) 0.012 0.922 (0.69-1.23) 0.583
Stage 113

StageI&II 80 Reference
StageIII&IV 33 1.773 (0.538-5.848) 0.347

Score 113 9.931 (3.132-31.489) <0.001 1519.166 (0.001-
3851261726.52) 0.330

Table 2. Univariate and Multivariate Cox regression analysis.

Fig. 5. Prognostic analysis and nomogram construction. (A) The uni-
variate cox regression analysis of the relation of 6 hub genes, risk 
score of the prognostic model and clinicopathologic factors (TNM 
staging) and OS of TNBC patients. (B) Nomogram was constructed 
for the prediction of 1-, 3- and 5-year OS probability. (C) The calibra-
tion curve was used to evaluate the predictive ability of the nomogram 
for 1-, 3- and 5-year OS.
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(ECM), IL-17 pathway as well as interaction between cy-
tokines and receptors. TME consists of not only immune 
cells and non-cancerous host cells, but also the non-cellular 
components such as ECM and chemokines, and cytokines 
[22]. Chemokines as well as chemokine receptors are sug-
gested as potential targets for tumor immunotherapy [23], 
and development of the chemokine receptor inhibitors has 
been revealed to enhance the anti-tumor immune response 
and inhibit TNBC tumor growth or enhance the response 
to chemotherapy and radiotherapy [24, 25]. IL-17 is repor-
ted to promote TNBC cell migration, and inhibition of IL-
17 decreases the CD8+ T cells in mouse tumors, which 
indicates that IL-17 contributes to the immunosuppressive 
TME in TNBC [26]. Therefore, exploration of the TIL-
related DEGs in TME of TNBC might provide promising 
targets for TNBC therapy.

Next, the prognostic risk model based on the TIL-re-
lated DEGs was established. Six hub genes, including 
SLITRK3, PCDHGB3, NELL2, SRRM4, ASIC2, and 
B4GALNT2 were identified according to Lasso cox 
regression analysis. The six-gene prognostic signature 
showed better predictive ability for the long-term progno-
sis of TNBC patients. SLITRK3 is previously reported 
as a neuronal transmembrane protein related to synapse 
development and also as a novel cancer biomarker of lung 
cancer, gastrointestinal stromal tumor and brain tumors 
[27, 28]. PCDHGB3 belongs to the protocadherin gam-
ma gene cluster and may affect cell-cell connections [29]. 
However, its role in cancer progression is rarely investi-
gated. NELL2 is a member of the family of multimeric 
and multimodular extracellular glycoproteins, and has 
been revealed to be downregulated in diverse malignan-
cies such as renal cell carcinoma, gastric cancer as well 
as breast cancer, and NELL2 silencing facilitates cancer 
cell migration [30, 31]. SRRM4 is lowly expressed in 
tumor samples, which is linked with the increased expres-
sion of mitotic gene expression, and the overexpression of 
SRRM4 inhibits tumor cell proliferation [32]. However, 
a study by Deshpande et al. shows that SRRM4 is upre-
gulated in systemic breast cancer cells, which is related 
to enhanced breast-to-brain metastases and reduced sur-
vival outcomes [33]. ASIC2 belongs to the degenerin/
epithelial sodium channel (DEG/ENaC) superfamily. It 
is reported to be expressed in the A549 lung cancer cells 
and involved in the extracellular acidosis-mediated pro-
liferation and migration of A549 cells [34]. B4GALNT2 
is highly expressed in TNBC samples, and silencing of 
B4GALNT2 suppresses TNBC cell proliferation, migra-
tion and invasion and increases TNBC cell apoptosis [35-
37]. The prognostic prediction ability of the six hub genes 
in TNBC was also explored. SLITRK3, NELL2, SRRM4, 
and B4GALNT2 were revealed as risk factors for OS in 
TNBC. The nomogram was constructed with 6 hub genes 
as well as clinicopathological risk factors, with great per-
formance in OS prediction. Risk score also showed pro-
gnostic value in TNBC.

5. Conclusion
To conclude, we identified 6 hub genes associated with 

immune cell infiltration in TNBC. The 6-gene prognostic 
signature was constructed and showed great prognostic 
potency, especially for the long-term prognosis prediction 
of TNBC patients. The findings of our study might benefit 
the clinical decision-making and design of individualized 

treatment plans.
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