1. Introduction

In every country in the world, cancer is the leading cause of death and a significant barrier to increasing life expectancy. According to WHO estimates, in 2019, cancer was the first or second leading cause of death before age 70 in 112 out of 183 countries, and third or fourth in another 23 countries. The rising incidence of cancer is the leading cause of death as well [1]. Currently, the enthusiasm in the medical community for fighting cancer is high, but with that comes constant attention. Therefore, more and more researchers are looking for cancer-related markers to determine the prognosis of cancer patients.

Gastric cancer (GC) is a malignancy of the digestive system. It ranks fourth among all cancers and is one of the leading causes of death worldwide [2]. GC is a global health concern, with at least 1 million new cases and more than 700,000 deaths in 2020, placing a heavy burden on the global economy. The incidence of GC has a strong geographical correlation, with higher incidence in East Asia, Central and South America and Eastern Europe and lower incidence in North America and Africa, probably due to differences in dietary habits [3, 4]. There are numerous risk factors that affect the occurrence of GC, including Helicobacter pylori infection, age, genetic risk factors, intake of nitrate, alcohol, pickling, high salt, fermentation, improper food storage, etc. [5-9]. Although radiological examinations, serological blood tests and endoscopic screening of the high-risk population have slightly reduced the rate of GC, the prognosis of GC patients is still poor, with a high mortality rate [10-12]. Therefore, there is a need to explore accurate prognostic indicators and prognostic models to recognize patients at high risk of death and to provide timely and appropriate treatment strategies.

TMEM proteins are a class of transmembrane family proteins whose members have transmembrane structures in the cell membrane and are involved in the regulation of various cellular functions and signaling pathways. TMEM proteins are classified into three main groups according to their functions: transporter proteins, receptor proteins and signaling proteins. The TMEM protein is quite rich in functions and plays a role in many diseases. For example, in asthma, the activation of TMEM16A by inflammatory mediators makes airway smooth muscle (ASM) more sensitive to cholinergic stimulation, and this sensitivity is an important factor in the development of airway hyperreactivity [13,14]. In head and neck squamous cell carcinoma
2. Materials and Methods

2.1. Cell Lines and Cell Cultures

Human gastric cancer cell lines including HGC-27 and MKN-45 as well as normal gastric epithelial cells GES-1 were purchased from Priscilla. HGC-27, MKN-45 and GES-1 were cultured in RPMI-1640 medium. In addition, 10% fetal bovine serum (Gibco) and penicillin-streptomycin (Gibco) were added to the medium.

2.2. Cell transfection

According to the experimental grouping, the cells were inoculated in 6-well culture plates with 10^3~10^4 cells per well, 3 replicate wells were designed for each group, and the cells were cultured in complete medium (1640+10% FBS+1% double antibody) overnight and then grouped for treatment. The groups were HGC-27 control group, HGC-27 sh-NC group, HGC-27 si-TMEM45A group, MKN-45 control group, MKN-45 sh-NC group and MKN-45 si-TMEM45A group for culture. Cell transfection was performed 24 h after cell seeding plates with cell densities of 30%~50%. Cells were collected for RNA extraction 24 years after transfection.

2.3. Western Blot Analysis

Cells were collected and fully lysed with IP cell lysis (containing PMSF) on ice. Cell lysates were centrifuged in an ultracentrifuge at 4°C, 12,000 rpm for 10 min and protein concentration was measured using the BCA Protein Assay Kit (Beyotime). Protein samples were mixed with sampling buffer, boiled in boiling water for 5 min, rapidly cooled on ice, and resolved by polyacrylamide gel electrophoresis. After electrophoresis, proteins were electrophoretically transferred to polyvinylidene difluoride (PVDF; Roche) membranes using a semi-dry blotter (Bio-Rad). After transfer, the membranes were incubated in phosphate-buffered saline (PBS) containing 5% skimmed milk and 0.1% Tween-20 for 2 hours at room temperature. Membranes were incubated with primary antibodies against human C-MYC (Affinity, AF6054), B-catenin (Affinity, BF8016), and GAPDH (Proteintech, 60004-1-Ig) overnight at 4°C, and then with horseradish enzyme-labeled goat-anti-rabbit IgG (Nakasugi Jinqiao, ZB-2301) at room temperature. 2301) and goat anti-mouse IgG (Zhongsui Jinqiao, ZB-2305) at room temperature. After washing with PBS, the immunoreactive bands were observed using Chemistar High-sig ECL Western Blotting Substrate.

2.4. RNA extraction and Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR)

Extract total RNA from cells using TRIzol reagent according to the manufacturer's instructions. The cDNA was then prepared using the reverse transcription kit Hifair II (TransGen Biotech). Primer Premier 5.0 and Beacon Designer 7.8 software were used for the design of quantitative PCR primers, which were then synthesized by General Biological Co. The primers used in this research were as follows: F-5’-AACAATTGATCGTGAAAGG and R-5’-GCCAT-CACGCAACTTTC for GAPDH. F-5’-GGGCTC-TGGCAAGGATCA and R-5’-CTGGCAGTGGTGCTG-TGATGT for c-Myc. F-5’-CATGGCCTCTTCGTGAA-CCTT and R-5’-CTCCCAGGCCATGCGGTA for TMEM45A. F-5’-GCGCTTGCCCTTCCGTTA and CCATCAAATCAAGATGGCA for β-catenin. SYBR Green qPCR Mix (manufacturer: Biosharp) was carried out for the qRT-PCR.

2.5. Cell counting kit 8 (CCK 8) determination

According to the experimental grouping, HGC-27 and
TMEM45A in gastric cancer: prognosis & mechanism

Cell. Mol. Biol. 2024, 70(7): 218-229

2.6. Transwell Assay

1000 cells were inoculated into the upper chamber of the transwell of a 24-well plate, 100 μL of serum-free medium was added to the upper chamber, and 600 μL of medium containing 20% serum was added to the lower chamber and incubated for 24 h. The cells in the lower layer of the chamber were fixed with methanol for 15 min, stained with 0.1% crystal violet for 20 min, washed twice with PBS, and photographed under the microscope. The cells in the lower layer of the chamber were fixed with methanol for 15 minutes, stained with 0.1% crystal violet for 20 minutes, washed twice with PBS, and photographed under the microscope.

2.7. Flow Cytometry

According to the experimental grouping, the cells were inoculated in 6-well culture plates with 10^4~10^6 cells per well, 3 replicate wells were designed for each group, and the cells were cultured in complete medium (1640+10% FBS+1% double antibody) overnight and then grouped for treatment. The groups were HGC-27 control group, HGC-27 sh-NC group, HGC-27 si-TMEM45A group, MKN-45 control group, MKN-45 sh-NC group and MKN-45 si-TMEM45A group for culture. Cell transfection was performed 24 h after cell seeding plates with cell densities of 30%-50%. Cell staining was performed after 48 hours of incubation at 37°C in a 5% CO2 incubator. The final assay was performed in a flow cytometer.

2.8. Wound-healing scratch assay

The cells were cultured in 6-well plates in a medium containing 10% fetal bovine serum and penicillin-streptomycin and grew to 100% in a carbon dioxide incubator containing 10% fetal bovine serum and penicillin-streptomycin. The wound was photographed with an optical microscope system at 0h and 24 h.

2.9. Acquisition of pan-cancer expression data

The gene expression and clinical data were downloaded from GDC Data Portal website (https://cancergenome.nih.gov/). GDC integrates and classifiers data to provide unified cancer genome data, including 68 primary sites and 33,549 cases. It contains data from several large-scale cancer genome research projects, including TCGA and OCG. The gene expression data were standardized. The analysis used data from 463 patients with stomach cancer. Patients with missing and duplicate clinical information were deleted. The data set GSE54129 and GSE19826 was obtained from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/).

2.10. Sparkle website analysis

Sparkle is a newly developed, feature-rich and comprehensive database (https://grswsci.top/analyze). Sparkle can perform not only single-gene analysis but also multi-gene analysis. We used the Sparkle website to analyze the association between TMEM45A expression and tumor immune subtypes.

2.11. TIMER database analysis

TIMER utilizes RNA-Seq data to determine the infiltration of six types of immune cells in tumor tissue, which are B cell, CD4 T cell, CD8 T cell, neutrophil, macrophage and dendritic cell [28, 29]. TIMER can also analyze the correlation of genomic and transcriptomic changes between tumor immune infiltrated populations and cancers, providing insights into tumor-immune interactions. TIMER was employed to analyze the expression of TMEM45A in pan-cancer. The online site was also be used to determine whether TMEM45A copy number variation (CNV) can affect immune cell infiltration.

2.12. GEPIA database analysis

GEPIA database integrates the datasets of GTEx normal tissue and TCGA cancer and employs bioinformatics technology to reveal cancer subtypes, genes, alleles or oncogenic factors, so as to further explore novel cancer markers and targets. It can allow us more simple and fast data mining, and dynamic analysis of gene expression profiles. In this experiment, c-MYC and β-catenin were analyzed based on the following conditions: [Log2FC]Cutoff> 2, p-value Cutoff<0.05.

2.13. TNMplot database analysis

TNMplot builds an integrated database using transcriptome-level datasets and creates a web platform to mine this database by comparing normal, tumor, and metastatic data for all genes in real time. The main function of TNMplot is to compare the expression of genes in normal, tumor and metastatic tissues. We used the TNMplot database to compare the differential expression of TMEM45A in normal and gastric tissues.

2.14. Kaplan–Meier (KM) plotter database analysis

By integrating clinical prognostic values and gene expression data, the Kaplan Meier Plotter database was utilized for the study, discovery and validation of survival-associated molecular markers via Meta-analysis. KM plotter was employed to analyze the relationship between TMEM45A expression and prognostic outcomes in GC patients, including disease-specific survival (DSS), overall survival (OS), progression-free interval (PFI) and disease-free survival (DFI).

2.15. TISIDB database analysis

TISIDB (http://cis.hku.hk/TISIDB/) is a database of tumor-immune interactions[30]. In TISIDB, we can easily look for the immune relationships between specific genes and the tumorigenesis environment. TISIDB database was utilized to obtain the correlations among TMEM45A, lymphocytes and immunostimulator genes.

2.16. ROC curve drawing and independent prognostic analysis

To verify the accuracy of TMEM45A in predicting prognosis, the survival ROC R software package v4.1.0 was applied to draw ROC curves for estimating 1-, 3- and 5-year survival. The higher the AUC value, the higher the specificity and sensitivity. Survival R software package
was employed for univariate and multivariate independent prognostic analyses to investigate whether TMEM45A is a prognostic indicator for GC patients.

2.17. CCLE database analysis
Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/ccle) consisted of 26 kinds of cancer cell lines. We retrieved the cell line data for all cancers from this website and used Perl software to extract the cell line data for GC and the expression levels of all genes. It was used in limma, ggplot2, ggpubr and ggExtra packages in R software to obtain genes with co-expression relationship with TMEM45A through co-expression analysis. The filtering conditions set for correlation test were: correlation coefficient corFilter >0.5, correlation test p-value <0.001. In R software, the enrichPlot package, ClusterProfiler package, GGPloot2 package, org.hs.eg.db package and Pathview package were employed to perform GO and KEGG enrichment analyses of TMEM45A co-expressed genes.

2.18. Establishment of immunoregulatory gene prognostic model
We identified survival-associated genes from all immunoregulatory genes and then constructed immunoregulatory risk models by multifactorial Cox regression analysis. Then, the patient’s risk value was calculated based on the following equation: Riskscore=coef(gene1)*expr(gene1)+coef(gene2)*expr(gene2)+coef(gene3)*expr(gene3)+... coef(gene n)*expr(gene n). Patients were categorized into low- and high-risk groups based on their median risk values. To verify whether there was a survival difference between the high- and low-risk groups, survival curves of TCGA GC patients were plotted using the survival kits. We performed the following analyses to measure the accuracy of the model. Risk curves were used to determine whether there was a difference in mortality between patients in the high- and low-risk groups. To determine whether the prognostic model could be employed as a clinical feature alone to predict the prognosis of patients, univariate and multivariate independent prognostic analyses were conducted using the Survival R software package. To verify the prediction accuracy of clinical factors and the survival model, survival ROC R software package was employed to draw multi-index receiver operating characteristic curve (ROC). The higher the AUC value, the higher the specificity and sensitivity. In order to further verify the model’s accuracy, the calibration line diagram and calibration curve were also constructed.

2.19. Statistical analysis
The correlations among TMEM45A expression and immunomodulatory genes were assessed using Spearman’s correlation coefficient. The hazard ratio (HR) and 95% confidence interval (CI) were evaluated using both univariate and multivariate Cox proportional hazards regression models. All statistical tests were operated with R software v4.1.0. P<0.05 was regarded as statistically significant.

3. Results
3.1. Expression of TMEM45A in GC pan-cancer
The mRNA expression of TMEM45A was remarkably elevated in most cancer tissues compared to normal tissue, as shown by TIMER online biomarker analysis (Figure 1A). Figure 1B shows the expression of TMEM45A in some cancers. Previous studies have classified 30 types of non-blood cancers into 6 immune subtypes according to the immune expression characteristics of tumors, namely C1 - wound healing type, C2 - IFN-γ Dominant type, C3 - inflammatory type, C4 - Lymphocyte Depleted type, C5 - Immunologically Quiet type, and C6 - TGF-β Dominant type. Immune subtypes are associated with survival in cancer patients. The C3 subtype has the best prognosis, and C1 and C2 patients have a worse prognosis. Patients with the C4 and C6 subtypes of cancer had the worst prognosis [31]. We used the Sparkle website to analyze the relationship between TMEM45A expression and immune subtypes. The results showed that the expression level of TMEM45A was high in C1, C2 and C6, while the expression level of TMEM45A was low in C3 (Figure 1C). These results suggest that high expression of TMEM45A may be associated with poorer prognosis in pancarcinoma. Somatic copy number variation is the main source of genetic changes in human cancer and plays an important role in cancer progression [32]. We used the Sparkle website to analyze the relationship between TMEM45A and copy number variation. The results showed that TMEM45A had significant copy number variation in pancarcinoma. And it also analyzes the TMEM45A that exists in part of cancer progression [31]. We used the Sparkle website to analyze the relationship between TMEM45A and copy number variation in pancarcinoma. The results showed that TMEM45A has significant copy number variation in pancarcinoma. And it also analyzes the TMEM45A that exists in part of cancer progression [31]. We used the Sparkle website to analyze the relationship between TMEM45A and copy number variation in pancarcinoma. The results showed that TMEM45A had significant copy number variation in pancarcinoma.
level of TMEM45A in some cancers. We also used kruskal algorithm and wilcoxon test respectively to analyze the relationship between TMEM45A and stage. We used kruskal algorithm to find that, in the part of cancer in different stages TMEM45A expression quantity is different, these cancers including READ, KICH, KIRC, TGCT, BRCA, BLCA and SKCM (Figure 3A). We also used wilcoxon test analysis to show that TMEM45A is expressed differently in stage-I-II and stage-III-IV in some cancers (Figure 3B).

3.2. TMEM45A has a high prognostic value in cancer
To investigate the prognostic value of TMEM45A, we performed a number of prognostic analyses, including overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI) and disease-free survival (DFI). Cox regression model analysis demonstrated that high expression of TMEM45A was a risk factor for OS in patients with the According 11 tumor types (Figure 4A), including BLCA, UCEC, PAAD, KIRP, KIRC, LIHC, OV, KICH, THCA, LGG, CHOL (Figure 4B). Further research revealed that TMEM45A expression was also markedly associated with DSS (Figure 5A) in an array of carcinoma categories, such as BLCA, UCEC, PAAD, KIRP, KIRC, LIHC, OV, KICH, THCA, LGG, CHOL (Figure 5B). Cox regression model analysis demonstrated that high expression of TMEM45A was a risk factor for DFI in patients with the according 3 tumor types (Figure 6A). Cox regression model analysis demonstrated that high expression of TMEM45A was a risk factor for PFI in patients with the according 8 tumor types (Figure 6B).

3.3. Effect of TMEM45A expression on chemotherapy drug sensitivity
We used the Sparkle website to predict the susceptibility of TMEM45A to different chemotherapy agents. The Sparkle website's chemotherapy drug analysis includes data from four databases: CTRP, GDSC1, PRISM and GDSC2. In CTRP, the higher the expression of TMEM45A was associated with copy number variation. (A) Copy number variation of TMEM45A was found in KIRC, ESCA, TGCT, PCPG, UCS and UVM. (B) The expression level of TMEM45A was positively correlated with copy number variation in KIRC, ESCA, TGCT, PCPG, UCS and UVM.
M45A, the higher the sensitivity of tumor cell lines to CAL-101 and vemurafenib, and the lower the sensitivity of tumor cell lines to Compound 23 citrate and austocystin D (Figure 7A). In GDSC1, the higher the expression of TMEM45A, the higher the sensitivity of the tumor cell line to Docetaxel and the lower the sensitivity of the tumor cell line to TPCA-1 (Figure 7B). In PRISM, the higher the expression of TMEM45A, the higher the sensitivity of the tumor cell line to monensin and the lower the sensitivity of the tumor cell line to ciclesonide (Figure 7C). The higher the expression of TMEM45A in GDSC2, the lower the sensitivity of the tumor cell line to Vorinostat (Figure 7D).

3.4. Potential function analysis of TMEM45A in human cancers

To further understand the effect of TMEM45A on the prognosis of tumor patients, we conducted pan-oncogene set enrichment analysis (GSEA). The resulting map showed significant enrichment in cell proliferation pathways, including the MAPK signaling pathway, TGF-beta signaling pathway, and Wnt signaling pathway. In addition, the co-expressed gene set was also present in Pathways in cancer, further demonstrating the carcinogenicity of TMEM45A (Figure 8).

3.5. Expression of TMEM45A in GC

To assess the differential expression of TMEM45A in GC patients, we downloaded gene expression data from the TCGA database and performed differential analysis and paired difference analysis of TMEM45A expression in all GC patients using R software. The data indicated that the mRNA expression of TMEM45A was markedly higher in GC tissue than in normal tissue (Figure 9A). And we further validated the expression of TMEM45A using GEO datasets GSE54129 and GSE19826. The results further showed that the mRNA expression level of TMEM45A was significantly up-regulated in patients with gastric cancer (Figure 9B, 8C). We also used TNMplot database to detect the expression of TMEM45A. Similarly, TMEM45A was up-regulated in gastric cancer tissues (Figure 9D). We also verified the expression of TMEM45A in cells. The results showed that compared with normal gastric epithelial cells GES-1, the expression of TMEM45A in gastric cancer cell lines HGC-27 and MKN-45 was significantly increased (Figure 9E).

3.6. Poor prognosis for stomach cancer patients with TMEM45A overexpression

To analyze the correlation between TMEM45A expression and GC prognosis, we divided all stomach cancer patients into high- and low-expression groups. We analyzed the relationship of TMEM45A overexpression with DSS, OS, PFland DFI in GC patients using the Kaplan Meier plotter database, and the findings demonstrated that TMEM45A overexpression was associated with shorter DSS, OS, PFland DFI (Figure 10A). We validated the sensitivity and specificity of TMEM45A to predict prognosis by plotting ROC curves. The results showed that the AUC values were 0.601, 0.639 and 0.705 for estimating 1-, 3- and 5-year survival.
5-year survival, respectively (Figure 10B). To determine whether TMEM45A could be used as a clinical characteristic to predict patient prognosis, we performed one-way and multi-way independent prognostic analyses. The results showed HR of 1.277 (95%CI 1.034-1.578, P=0.023) and 1.234 (95%CI, 0.994-1.533, P=0.057) for the risk scores in both univariate and multivariable Cox regression analyses (Figure 10C, 9D). Therefore, TMEM45A is a fairly reliable prognostic indicator.

3.7. The promoter region of TMEM45A has a good prognosis after methylation

We downloaded DNA methylation data from TCGA database and used R software for data analysis. The results showed that there were 9 methylation sites in the promoter region of TMEM45A (Figure 11A). We found that the expression level of TMEM45A decreased with the increase of methylation level in the promoter region of TMEM45A (Figure 11B). More importantly, we found that the level of methylation site cg10770076 increased and the expression level of TMEM45A decreased (Figure 11C). Patients with high levels of the methylation site cg10770076 had a better prognosis (Figure 11D). This result further verified the correlation between TMEM45A expression and patient prognosis.

3.8. Correlation analysis of TMEM45A expression with immune cell infiltration

The tumor microenvironment is mainly composed of tumor cells, surrounding immune and inflammatory cells, cancer-associated fibroblasts (CAFs) and nearby interstitial tissues. The lymphocytes that infiltrate around the tumor are called tumor infiltrating lymphocytes (TILs), and these lymphocytes help the tumor cells achieve immune escape and promote the progression of the malignant tumor. CAFs can release stromal cell derived factors and pro-angiogenic factors to promote tumor cell growth and tumor blood vessel formation. In this paper, we used the Sparkle website to analyze the relationship between TMEM45A expression and the tumor immune microenvironment. The results showed that the expression of TMEM45A was positively correlated with TMEscore (Figure 12). Previous studies have shown that TMEscore can act as a prognostic factor for gastric cancer and can be used to predict the efficacy of immune checkpoint inhibitors [33]. We also found that the expression of TMEM45A is strongly correlated with macrophages and CAFs. Immune cell correlation heat maps showed that major TMEM45A was more correlated with M2 macrophages (Figure 12). M2 macrophages have a strong tumor promotion effect. Figure 13A shows the relationship between TILs abundance and TMEM45A expression in different human cancers. Figure 13B shows six tumor-infiltrating lymphocytes with the strongest correlation with TMEM45A expression, including Mast, MDSC, Monocyte, Neutrophil, pDC and Neutrophil. These cells can play an immunosuppressive role,
enable tumor cells to escape the surveillance and killing of immune cells, promote the immune escape of tumor cells, and promote the progression of tumors. These results suggest a poor prognosis for gastric cancer patients with TMEM45A overexpression.

3.9. The high expression of TMEM45A promotes the progression of gastric cancer

We used si-RNA to interfere with the expression of TMEM45A in HGC-29 and MKN-45 gastric cancer cell lines. The results showed that compared with the control group, the expression of TMEM45A in HGC-29 and MKN-45 was significantly decreased (Figure 14A). CCK-8 experiment showed that the proliferation ability of MKN-45 decreased after the downregulation of TMEM45A (Figure 14B). Transwell Assay showed that the migration capacity of HGC-29 and MKN-45 decreased significantly after downregulation of TMEM45A (Figure 14C). Flow Cytometry showed that down-regulation of TMEM45A could induce apoptosis (Figure 14D). Cell cycle experiments showed that the number of cells in G2 phase increased significantly after the downregulation of TMEM45A (Figure 14E). Wound-healing scratch assay showed that the migration ability of cells decreased after downregulation of TMEM45A (Figure 14F).

3.10. TMEM45A activates the Wnt/β-catenin signaling pathway

We used CCLE database to obtain data on GC cell lines. Genes co-expressed with TMEM45A were obtained by co-expression method. The results showed that 388 genes were co-expressed with TMEM45A. TMEM45A co-expressed genes were also selected for functional analysis and GSEA enrichment analysis. To further elucidate the role of TMEM45A in GC, GSEA was performed on the H-TMEM45A and L-TMEM45A groups, which were divided by the median level of TMEM45A expression. H-TMEM45A is abundant in Wnt SIGNALING PATHWAY (Figure 15A). We further experimentally verified whether TMEM45A can activate the Wnt SIGNALING PATHWAY. We used the GEPIA database to verify the expression of c-MYC and β-catenin in gastric cancer. The results showed that the mRNA expression levels of c-MYC and β-catenin were significantly increased in gastric cancer (Figure 15B). The mRNA expression levels of c-MYC and β-catenin in MKN-45 and HGC-27 were significantly increased compared with GES-1 (Figure 15C). In addition, we detected the expression of c-MYC and β-catenin in HGC-29 and MKN-45 after TMEM45A knockdown at gene level and protein level, respectively. The results showed that both c-MYC and β-catenin were significantly reduced in gene and protein levels (Figure 15D-14F).

3.11. Construction of immunoregulatory gene prognostic model

We assessed the relationship between two immune...
modulators and TMEM45A expression using the TISIDB database, which included 24 immunoinhibitors and 45 immunostimulators. The result shows the relationship between immunostimulators and TMEM45A expression in different human cancers, of which 30 immunostimulators were related to TMEM45A expression. To further predict GC prognosis, a prognostic model was established using immunomodulatory molecules associated with TMEM45A. Six prognostic immunoregulatory molecules were screened by univariate COX from 30 immunoregulatory molecules, including one low-risk immunoregulatory molecule (HR<1) and 5 high-risk immunomodulatory molecules (HR>1) (Figure 16A). In addition, by multivariate Cox analysis, three immunoregulatory molecules were screened out from the above 6 prognostic immunoregulatory molecules, including one low-risk immunoregulatory molecule (PDCD1) and two high-risk immunoregulatory molecules (CXCR4 and TGFB1) (Figure 16B). These three immunomodulatory molecules were subsequently used to establish optimal prognostic risk models. All GC patients were assigned to low- and high-risk groups according to the model formula. The survival analysis revealed that GC patients in high-risk group had a worse prognosis (Figure 16C). Risk curves and scatter plots were used to demonstrate the risk scores and survival status of patients, suggesting that high-risk patients had higher mortality (Figure 16D). Heatmap of four immunomodulatory genes. (A, B) Screening of immunomodulatory genes in prognostic model. (C) Survival curves of GC patients in different groups. (D) Low to high-risk curves for all GC patients. The band tabulates the survival status of all GC patients. The blue dots represent survival, and the red dots represent death. The number of deaths was significantly higher in GC patients with higher risk. (E) Heat map showing that CXCR4 and TGFB1 expression were upregulated in high-risk group, while PDCD1 was overexpressed in low-risk group (Figure 16E). To further validate the model’s accuracy, the predictive value was evaluated. The specificity and sensitivity of the prognostic models were assessed by calculating the AUC values. The results showed that the survival model combined with other clinicopathological parameters had a good prediction effect. The AUC value was 0.747, suggesting that the prediction model is very reliable (Figure 16F). Univariate and multivariate Cox regression analyses were employed to determine whether the four immunoregulatory molecular prognostic models could serve as independent predictors of GC. In univariate and multivariate Cox regression analyses, the HR values of risk score were 2.215 (95%CI 1.701−2.885, P<0.001) and 2.227(95%CI 1.710−2.902, P<0.001) (Figure 16H, 15I). Therefore, it can be seen from the above results that the survival model of four immunomodulatory molecules may serve as an independent predictor.

4. Discussion
Cancer has always plagued humanity and placed a heavy burden on the global economy. About 18 million people are diagnosed with cancer each year, and about 9 million people die from it [34]. Therefore, cancer prevention, screening and treatment efforts are imperative. Pan-cancer analyses of different tumors provide comprehensive insights into tumor biology and cancer molecular phenotypes, which can help identify genomic changes that may play an important role and also point the way to finding biomarkers for targeted therapies [35].

GC is one of the most frequent cancers around the world, with a higher incidence in men than in women, mostly occurring between 60 and 80 years old. It is highly malignant and has a high mortality rate. Although the incidence and mortality of GC have decreased recently owing to the emphasis on early screening and improvement of treatment techniques, GC still poses a serious medical burden, especially in East Asia [36]. TNM staging is the most important clinical indicator for prognostic prediction and treatment. However, some studies have reported that TNM staging cannot be fully used to predict the prognostic outcomes of cancer patients [37-39]. Due to the tumor heterogeneity, individual differentiation is considerably great, and even the prognosis of patients with the same stage may be different. Therefore, it is necessary to discover new molecular markers or models for exploring the molecular mechanisms of GC, so as to more accurately

judge the prognosis of GC patients and better develop clinical treatment strategies.

TIICs in the tumor microenvironment have been shown to play a key role in tumor occurrence and influence the clinical outcomes of cancer patients. TIICs are highly heterogeneous and plastic, which can inhibit cancer or support tumor growth [40]. It has been reported that the distribution and morphology of TIICs are varied in different stages of GC, thereby affecting the progression and prognosis of GC patients [41, 42]. Many studies have shown that tumor-related genes can be used as molecular markers to reflect the level of immune cell infiltration in tumors. For example, CALD1 expression may influence the prognosis of GC patients by regulating GC immune cells [43]. In GC patients, LCP1 can regulate the interactions among immune cells and is significantly and positively correlated with the invasiveness and poor prognosis of GC patients [44]. The differentiation of TIICs in GC may predict the prognosis of GC patients, and become key influential factors for GC treatment [45].

In this study, we first demonstrated the expression of TMEM45A in pancerinoma, and we found that TMEM45A is upregulated in most cancers. We found that the expression level of TMEM45A was related to stage and CNVs. We also found that TMEM45A has good prognostic value in pancerinoma. We demonstrated the overexpression of TMEM45A in GC using multiple databases and elucidated that TMEM45A may be a reliable prognostic marker in GC patients. Additionally, our analysis indicated that TMEM45A expression in GC could affect the level of immune cell infiltration and different immune regulation. This study further demonstrated the significance of TMEM45A expression in the immune microenvironment of GC. These results provide theoretical support for assessing the role of TMEM45A in tumor immunity and its application as a biomarker for GC. We also demonstrated that TMEM45A can promote the progression of gastric cancer and inhibit the apoptosis of gastric cancer cells. We also obtained genes co-expressed with TMEM45A by co-expression method and performed functional analysis. We found that TMEM45A can activate the Wnt signaling pathway. We also used immunoregulatory molecules associated with TMEM45A to construct prognostic models. Firstly, three genes were screened from 30 immunomodulator molecules to establish a prediction model, and the risk value of each patient was measured using a risk-scoring formula, and GC patients were assigned to low- and high-risk groups based on the average risk score of the patients. Second, the survival curve of GC patients showed that the survival rate of GC patients in high-risk group was low. The risk curve and scatter plot demonstrated that the mortality of high-risk patients was remarkably higher than that of low-risk patients. The AUC value of the risk-scoring model was 0.747, indicating that the prognostic models could predict the prognosis of GC patients.

Although there are some limitations, this study provides us with a better understanding of the relationship between TMEM45A and GC. First of all, the data collected in this paper are almost from the online database. Second, the roles of TMEM45A gene in the diagnosis and treatment of GC have not been explored. Therefore, future studies are needed to further determine whether TMEM45A can be an effective therapeutic target or diagnostic marker. We did not discuss the detailed molecular mechanism of TMEM45A gene in GC. Hence, the exact mechanism of the relationship between TMEM45A gene and GC needs to be further explored.

5. Conclusion

In summary, by pan-cancer analysis, we found that TMEM45A is a carcinogen and a prognostic marker. The correlation between TMEM45A gene and GC was systematically analyzed. The expression of TMEM45A was upregulated in GC, and patients with TMEM45A overexpression had a poor prognosis. The relationships among TMEM45A, immune cell infiltration and immunomodulatory molecules were also explored. The findings demonstrated that TMEM45A could affect the infiltration of various immune cells. Therefore, TMEM45A may become a new cancer biomarker and therapeutic target for GC patients.

Conflict of Interests
The author has no conflicts with any step of the article preparation.

Consent for publications
The author read and approved the final manuscript for publication.

Ethical statement
Human specimens and animals were not used in this study.

Informed Consent
The authors declare that no patients were used in this study.

Data availability statement
The expression data of 33 cancer patients and the clinical data for survival analysis were derived from the TCGA database (https://cancergenome.nih.gov/). The gastric cancer patient database I used was derived from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). I used gastric cancer cell line data from CCLE database (https://portals.broadinstitute.org/ccle). TCGA, GEO and CCLE are all open databases that are free for researchers to use, and each researcher can use the data in their own research projects.

Author contribution statement
Xie Qixin's main contributions are data collection, software download, data visualization, experimental validation, article writing and article revision. The major contributions of Tao Guo, Hon Deng and Changjun Yu are article revisions. Fang Changyi's main contribution is article revision and financial support.

Grant statement
Thanks to Dr. Changyi Fang for the support of the 2021-2022 National Natural Science Project (Fund number: 81902451).

References
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I,
TMEM45A in gastric cancer: prognosis & mechanism

brane 163 (TMEM163) protein effluxes zinc.

Okuyama K, Yanamoto S (2022) TMEM45A as a potential treatment target for head and neck cancer.

Vukasin's disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. Cell 185:2292-2308. doi: 10.1016/j.cell.2022.05.021

Cell Death Dis 10:919. doi: 10.1038/s41419-019-2088-x

Oncol Rep 33:3124-3130. doi: 10.3892/or.2015.3902

Cancer Res 77:e108-e110. doi: 10.1158/0008-5472.CAN-17-0307

Bioinformatics 35:4200-4202. doi: 10.1093/bioinformatics/btz210

Immunity 48:812-830. doi: 10.1016/j.immuni.2018.03.023

Brief Bioinform 24:10.1093/bib/bbad053

Nat Commun 11:4423. doi: 10.1038/s41467-020-18246-6