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1. Introduction
Sepsis is a common fatal disease that can cause the host 

to be unable to reactively control the active infection of 
microorganisms and their products that invade the body, 
causing systemic inflammatory response syndrome, which 
further develops into septic shock and multiple organ dys-
function syndrome (MODS) [1]. Sepsis is the main cause 
of death in critically ill patients in the intensive care unit 
(ICU). About 20% to 25% of severe sepsis patients will 
die, and the mortality rate is increasing [2]. Sepsis usually 
causes acute kidney injury (AKI) and is the main cause of 
AKI. More than 30% of AKI patients are caused by sepsis 
[3]. AKI is very common in critically ill patients, and the 
case fatality rate is twice that of similar patients without 
AKI. 50% of patients with severe AKI cannot recover and 
eventually progress to chronic kidney disease [4]. There-
fore, how to prevent the occurrence and development of 
AKI, one of the most common complications of sepsis, 
has become one of the most serious medical problems in 
contemporary medicine.

In recent years, great progress has been made in the 
study of the cellular and molecular etiological mecha-

nisms of AKI, and there is a new understanding of the 
pathogenesis of AKI. It was originally believed that AKI 
was associated with shock caused by surgery, heart failure, 
sepsis, and hypovolemia. Therefore, it was believed that 
AKI was caused by decreased renal blood flow. However, 
the clinical treatment of AKI has little effect, indicating 
that ischemia may not be the only factor leading to AKI. 
More and more studies have shown that inflammation, im-
mune response, disturbance of renal tubule and glomerular 
microvascular blood flow may be involved [5,6]. These 
studies have focused on the damage of renal tubular epi-
thelial cells.

CDGSH iron sulfur domain 2 (CISD2) is an evolu-
tionarily highly conserved gene. CISD2 contains a trans-
membrane domain, a CDGSH domain and a conserved 
amino acid sequence bound by an iron ion [7]. The CISD2 
gene is located on human chromosome 4 and the enco-
ded protein is mainly located in the outer mitochondrial 
membrane, which plays a role in regulating the integrity of 
mitochondria in mammals [8]. CISD2 has been reported to 
be widely involved in the development and progression of 
tumors, including proliferation, apoptosis, and autophagy 
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[9-11]. Moreover, CISD2 has been shown to be involved 
in the regulation of cellular aging [12-14]. In addition, Lin 
et al. [15] demonstrated that curcumin could inhibit LPS-
induced inflammation and apoptosis of neuronal cells in a 
CISD2-dependent manner. However, the role of CISD2 in 
septic AKI is not known.

In this article, we tried to describe the role of CISD2 in 
septic AKI. We used LPS to construct an in vitro model of 
septic AKI, and found that CISD2 expression decreased 
in LPS-treated HK-2 cells. And overexpression of CISD2 
could inhibit LPS-induced inflammation and apoptosis of 
HK-2 cells by activating the SHH signaling pathway. Our 
findings provide a potential therapeutic target for septic 
AKI.

2. Materials and methods
2.1. Cell culture and transfection

The HK-2 cell line was purchased from the American 
Type Culture Collection (ATCC, Manassas, VA, USA). 
HK-2 cells were cultured in complete medium containing 
dulbecco’s modified eagle medium / F-12 (DMEM / F-12) 
(Gibco, Rockville, MD, USA), 10% fetal bovine serum 
(FBS, Gibco, Rockville, MD, USA) and 1% penicillin/
streptomycin (Gibco, Rockville, MD, USA) and incubated 
in a cell incubator containing 5% CO2 at 37℃. HK-2 cells 
were treated with 500 ng/ml LPS to establish an in vitro 
model of septic AKI.

The CISD2 overexpression plasmid was constructed 
by Shanghai Genechem Co., LTD (Shanghai, China) and 
transfected into HK-2 cells with Lipofectamine™ 3000 
(Invitrogen, Carlsbad, CA, USA) according to the ins-
tructions. Cells were divided into 4 groups: control group, 
LPS treatment group, LPS+vector group, and LPS+CISD2 
group. In order to study the role of the SHH pathway, the 
SHH pathway inhibitor cyclopamine (Cyc, MedChe-
mExpress, Shanghai, China) was used to inhibit the activi-
ty of the SHH pathway. Cells were divided into 2 groups: 
LPS+CISD2 group, LPS+CISD2+Cyc group.

2.2. Western blot
Total protein of HK-2 cells was extracted using ra-

dioimmunoprecipitation assay (RIPA) lysis buffer (Beyo-
time, Shanghai, China) and protein concentration was 
measured using the bicinchoninic acid (BCA) method 
(Beyotime, Shanghai, China). 5 ×sodium dodecyl sulphate 
(SDS) protein loading buffer (Beyotime, Shanghai, China) 
was added to the protein sample before the protein sample 
was boiled. The protein was separated in sodium dodecyl 
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 
gel at a voltage of 120 V, and then transferred to polyvi-
nylidene fluoride (PVDF) membrane (Millipore, Billerica, 
MA, USA). The membrane was then incubated in 5% skim 
milk to block non-specific antigens. After that, the mem-
brane was incubated with primary antibodies (CISD2, 

Abcam, Cambridge, MA, USA, Rabbit, 1:1000; SHH, 
Abcam, Cambridge, MA, USA, Rabbit, 1:1000; Gli1, 
Abcam, Cambridge, MA, USA, Rabbit, 1:1000; GAPDH, 
Abcam, Cambridge, MA, USA, Rabbit, 1:1000). Then the 
membrane was incubated with secondary antibody (Ab-
cam, Cambridge, MA, USA, Rabbit, 1:5000). Blots were 
developed with Clarity Western ECL Substrate (Bio-Rad, 
Shanghai, China). 

2.3. Quantitative real-time polymerase chain reaction 
(RT-PCR) analysis

HK-2 cells were seeded in a 24-well plate and 0.5 mL 
of TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was 
employed to lyse the cells. Then 0.1 ml of chloroform was 
added. The mixture was shaken vigorously for 30 seconds 
and then allowed to stand for 5 minutes, followed by cen-
trifugation at 4℃ with a centrifugal force of 12,000 g for 
15 minutes. The upper aqueous phase was collected and 
transferred into a new Eppendorf (EP) tube, and isopro-
pyl alcohol was added and mixed fully. After the mixture 
was allowed to stand for 10 minutes, it was centrifuged at 
12,000 g for 10 minutes at 4℃. Subsequently, the super-
natant was discarded, 75% ethanol was added and then the 
RNA was precipitated by centrifugation at 7500 g at 4 ℃ 
for 10 minutes. Finally, 20 μL of diethyl pyrocarbonate 
(DEPC)-treated Water (Beyotime, Shanghai, China) was 
used to dissolve the RNA. The purity and concentration of 
the total RNA was detected using NanoDrop 2000C Ultra-
microspectrophotometer. HiScript® III RT SuperMix for 
qPCR (Vazyme, Nanjing, China) was utilized to perform 
reverse transcription of mRNA. AceQ Universal SYBR 
qPCR Master Mix (Vazyme, Nanjing, China) was used to 
perform RT-PCR. GAPDH was the internal control. All 
the primers were listed in Table 1.

2.4. Enzyme-linked immunosorbent assay (ELISA) 
assay

The HK-2 cell supernatant was collected. The contents 
of inflammatory cytokines (TNF-α, IL-1β, IL-6) in the 
supernatant of HK-2 cells were detected using correspon-
ding ELISA detection kits (Beyotime, Shanghai, China).

2.5. Caspase-3 activity
Caspase-3 activity of HK-2 cells was detected using 

Caspase-3 activity detection kit (Beyotime, Shanghai, 
China).

2.6. Flow Cytometry
HK-2 cells were collected using Trypsin Solution wit-

hout EDTA (ethylenediaminetetraacetic acid) (Beyotime, 
Shanghai, China). Then the cells were washed using phos-
phate buffered saline (PBS). After that, the cells were 
resuspended in 100 μL of Binding Buffer, and then 5 μL 
of Annexin V-FITc (KeyGen, Shanghai, China) and PI 

Gene name Forward (5'>3') Reverse (5'>3')
CISD2 GCAAGGTAGCCAAGAAGTGC CCCAGTCCCT GAAAGCATTA
SHH GATGAGGAAAACACGGGAGC CTGCTCGACCCTCATAGTGT
Gli1 TCTGTGATGGGCAATGGTCT TCTGGGGTGGGATCAGGATA
GAPDH ACAACTTTGGTATCGTGGAAGG GCCATCACGCCACAGTTTC

RT-PCR, quantitative real time polymerase chain reaction.

Table 1. Real time PCR primers.
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and Gli1 in HK-2 cells. Compared with the control group, 
the expressions of SHH and Gli1 in the LPS group were 
markedly reduced, suggesting that LPS treatment inhibited 
the SHH pathway. After up-regulating CISD2, the SHH 
signaling pathway was activated, which was manifested 
by the increased expression of SHH and Gli1 (Figure 3A). 
We also tested the levels of SHH mRNA and Gli1 mRNA, 
and the results were consistent with the above (Figure 3B 
and 3C).

3.4. CISD2 inhibited LPS-induced inflammation and 
apoptosis of HK-2 cells via activating SHH signaling 
pathway

We used the SHH pathway inhibitor cyclopamine 
(Cyc) to inhibit the activation of the SHH pathway. The 
inhibition of SHH pathway obviously eliminated the effect 
of CISD2 overexpression to inhibit LPS-induced inflam-
mation and apoptosis of HK-2 cells. Compared with the 
LPS+CISD2 group, not only the level of inflammatory 
cytokines increased remarkably, but also the activity of 
Caspase-3 and the rate of apoptosis increased markedly in 
the LPS+CISD2+Cyc group (Figure 4A~4F). These indi-
cated that the inhibition of LPS-induced inflammation and 
apoptosis of HK-2 cells by CISD2 was dependent on the 
SHH pathway.

(KeyGen, Shanghai, China) were both added. Then ano-
ther 400 μl of Binding Buffer was added. The apoptosis 
rate was analyzed by flow cytometry.

2.7. Terminal deoxynucleotidyl transferase-mediated 
dUTP Nick-End Labeling (TUNEL) staining

HK-2 cells were first fixed using 4% paraformaldehyde 
and then 0.1% Triton X-100 was used to increase cell per-
meability. After that, the cells were incubated with One 
Step TUNEL Apoptosis Assay Kit (Beyotime, Shanghai, 
China) at 37 ℃ for 1 hour. Then 4',6-diamidino-2-pheny-
lindole (DAPI) (Beyotime, Shanghai, China) was used to 
stain the nucleus. The TUNEL-positive cells were obser-
ved using a fluorescence microscope.

2.8. Statistical analysis
Measurement data were expressed as χ±s, and the 

measurement data were tested for normality. Differences 
between two groups were analyzed by using the Student's 
t-test. Comparison between multiple groups was done 
using One-way ANOVA test followed by Post Hoc Test 
(Least Significant Difference). P<0.05 indicated a signifi-
cant difference.

3. Results
3.1. CISD2 was down-regulated in LPS-treated HK-2 
cells

We used LPS to treat HK-2 cells, thus establishing a 
cell model of septic AKI. Then, through Western blot and 
RT-PCR, we detected the protein and mRNA levels of 
CISD2 and found that compared with the control group, 
the expression of CISD2 in the LPS-treated group de-
creased significantly (Figure 1A and 1B).

3.2. Up-regulation of CISD2 inhibited LPS-induced 
inflammation and apoptosis of HK-2 cells

When the CISD2 overexpression plasmid was transfec-
ted into HK-2 cells, the expression of CISD2 increased 
dramatically (Figure 2A). Compared with the control 
group, the levels of inflammatory cytokines (TNF-α, IL-
1β, IL-6) in the LPS group were notably increased, and 
overexpression of CISD2 suppressed the levels of these 
inflammatory cytokines (Figure 2B~2D). Moreover, LPS 
treatment increased the activity of Caspase-3 in HK-2 cells 
and also increased the apoptosis rate and the percentage of 
TUNEL-positive cells. However, increasing CISD2 clear-
ly reversed these effects (Figure 2E~2G).

3.3. Up-regulation of CISD2 activated the SHH signa-
ling pathway

By Western blot, we detected the expression of SHH 

Fig. 1. CISD2 was down-regulated in LPS-treated HK-2 cells. (A) 
Western blot showed the expression of CISD2 (“*” P<0.05 vs. control, 
n=3). (B) CISD2 mRNA expression was detected by RT-PCR (“*” 
P<0.05 vs. control, n = 3).

Fig. 2. Up-regulation of CISD2 inhibited LPS-induced inflammation 
and apoptosis of HK-2 cells. (A) CISD2 expression was detected by 
Western blot (“*” P<0.05 vs. vector, n = 3). The contents of TNF-α (B) 
and IL-1β (C) and IL-6 (D) in supernatant of HK-2 cells (“*” P<0.05 
vs. control, “#” P<0.05 vs. LPS+vector, n=3). (E) The Caspase-3 acti-
vity in HK-2 cells (“*” P<0.05 vs. control, “#” P<0.05 vs. LPS+vector, 
n=3). (F) Apoptosis rate was detected by flow cytometry (“*” P<0.05 
vs. control, “#” P<0.05 vs. LPS+vector, n=3). (G) Results of TUNEL 
staining in each group (magnification: 200×) (“*” P<0.05 vs. control, 
“#” P<0.05 vs. LPS+vector, n=3).
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4. Discussion
Sepsis can easily lead to AKI and is closely related to 

the prognosis of critically ill patients [16]. AKI associated 
with sepsis is one of the most common organ dysfunctions 
in critically ill patients. There is currently no reliable drug 
for prevention and treatment and the prognosis is poor. 

Inflammation and renal tubular epithelial cell apopto-
sis are both mechanisms of acute renal injury in sepsis. 
Under the action of endotoxin or endotoxin-like subs-
tances released by bacteria, the body's neutrophils, mono-
cytes, and vascular endothelial cells undergo a complex 
immune network reaction, and release a large number of 
endogenous inflammatory mediators (including IL-1, IL-

6, TNF-α, PAF, prostaglandin, etc.) into the blood circula-
tion, causing damage to multiple organs including the kid-
ney. The TLR4/NF-κB pathway has been shown to be in-
volved in the process of renal inflammatory response, and 
inhibition of TLR4/NF-κB-mediated inflammatory res-
ponse has a protective effect on LPS-induced AKI [17,18]. 
Apoptosis is through a series of gene activation, expres-
sion and regulation to maintain the stable programmed 
death of the cell environment. After receiving pathological 
stimulation, the disorder of apoptosis leads to excessive 
cell death and organ dysfunction. According to previous 
views, acute tubular necrosis (ATN) caused by renal ische-
mia and inflammatory factors plays a leading role in septic 
AKI. However, recent studies have shown that apoptosis 
is an important mechanism for the development of AKI 
caused by sepsis [19]. Previous studies have found that 
apoptosis related to Fas and Caspase signaling pathways 
mediates extensive death of renal tubular epithelial cells 
in septic AKI [20]. These mitochondrial-dependent apop-
tosis pathways start with the generation of oxidative stress 
and then promote the Bax and Bcl-2 protein complex to 
enter the mitochondria, resulting in increased mitochon-
drial permeability, release of cytochrome C, activation of 
Caspase-3, and initiation of apoptosis pathways [21,22].

SHH signaling pathway is one of the most conservative 
signaling pathways in biological evolution. It is involved 
in multiple processes of embryonic development in verte-
brates and invertebrates and is crucial for the development 
of nervous system and the formation and construction of 
organs. In the classical SHH signaling pathway, the SHH 
protein binds to a Patched receptor by autocrine or para-
crine, removing the inhibition of the Smoothed receptor 
and enabling Gli1, Gli2 and Gli3 to enter the nucleus 
and initiate the expression of a series of target genes that 
control the growth, survival and differentiation of cells 
[23]. Administration of exogenous recombinant SHH pro-
tein can significantly improve neurobehavioral score, re-
duce cerebral infarction area, and promote angiogenesis of 
peripheral tissues of ischemia and colonization of neural 
stem cells in rats with cerebral ischemia-reperfusion injury 
[24]. Activating the SHH pathway could also inhibit LPS-
induced lung inflammation and reduce acute lung injury25.

In this study, we found for the first time that the expres-
sion of CISD2 decreased in LPS-induced AKI. Moreo-
ver, LPS obviously induced inflammation and apoptosis 
of renal tubular epithelial cells, and inhibited the activity 
of SHH signaling pathway. Overexpression of CISD2 can 
greatly inhibit LPS-induced inflammation and apoptosis, 
and activate the SHH pathway. However, blocking the 
SHH pathway eliminated the protective role of CISD2 in 
septic AKI.

5. Conclusion
CISD2 was down-regulated in septic AKI, and up-re-

gulation of CISD2 could inhibit LPS-induced inflamma-
tion and apoptosis of HK-2 cells by activating the SHH 
signaling pathway.
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