Improving the anti-diabetic and anti-hyperlipidemic activities of extra virgin olive oil by the incorporation of diallyl sulfide

Emma Habibi1, Tarek Baâti1, Slimen Selmi2, Yassine M’Rabet1, Leila Njim1, Syed Amir Ashraf3, Jamal R. Humaidi1, Walid Sabri Hamadou1, Mejdi Snoussi6,7,*, Noumi Emira6,7, El Hassane Anouar4, Karim Hosni1

1 Laboratoire des Substances Naturelles, Institut National de Recherche et d’Analyse Physico-chimique (INRAP), Biotechnpôle de Sidi Thabet, Ariana 2020, Tunisia
2 Laboratoire de Physiologie Fonctionnelle et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Tunisia
3 Service d’Anatomie et de Cytologie Pathologique, CHU Fattouma Bourguiba, 5000 Monastir, Tunisia.
4 Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia
5 Chemistry Department, Faculty of Science, Ha’il University, 81451 Hail, P.O. Box 2440, Saudi Arabia
6 Department of Biology, College of Science, Hail University, P.O. Box 2440, Ha’il 2440, Saudi Arabia
7 Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
8 Medical and Diagnostic Research Center, University of Ha’il, Hail 55473, Saudi Arabia
9 Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia

1. Introduction

Olive oil is the highest grade of edible oils which is prized for its unique organoleptic properties and health benefits. Extra virgin olive oil (EVOO) is the key functional food of the well-known Mediterranean diet commonly associated with lower incidences of cardiovascular diseases, cancers, and immune disorders [1]. Among the wide range of nutraceuticals present in EVOO, fatty acids (i.e. oleic acid, linoleic acid, linolenic acid and palmitoleic acid), vitamin E (α-, β-, and γ-tocopherols), phytosterols (i.e. β-sitosterol, Δ^-avenasterol, stigmasterol, campesterol, campestanol, ergosterol, cycloartenol, and cycloartenol), pigments (i.e. β-carotene, lutein, violaxanthin, neoxanthin, and chlorophyll derivatives) and phenolic compounds (i.e. hydroxytyrosol, tyrosol, oleruropein, oleanolic acid, oleocanthal, ligstroside, oleacein, pinoresinol, acetoxypinoresinol, apigenin, luteolin, sinapic acid, ferulic acid, vanillic acid, p-coumaric acid, protocatechuic acid, and hydroxyl-isochroman) have received a great deal of attention because of their interesting biological activities [2, 3]. Previous pharmacological studies pointed to the antioxidant, antimicrobial [4], anti-obesity [5], histoprotective...
2.1. Bioactivities of diallyl sulfide-rich olive oil

The advantages of oleuropein [9], tyrosol [10], hydroxytyrosol [11] and oleic acid [12] in preventing diabetes and its associated complications namely oxidative stress and hyperlipidemia have been reported. Owing to the wide array of bioactive ingredients and potential biological activities, the investigation of EVOO is a boundless field, notably focusing on the isolation and purification process, analytical and authentication techniques, conception of new EVOO-based products and their biological properties [13]. In the latter case, the available data showed that enrichment of EVOO could represent an attractive option not only for ensuring an optimal intake of EVOO polyphenols but also for the development of new functional foods with better oxidative stability [14], good sensory attributes and improved biological activities [15]. In terms of bioactivity, a previous pharmacokinetic study showed that enrichment of EVOO with its own phenolic compounds significantly increased their bioavailability and their concentrations in human plasma [16].

Later, a randomized controlled trial showed that the consumption of EVOO enriched with its own phenolic compounds improved endothelial function through the increased ischemic reactive hyperemia and reduced oxidized LDL in hypertensive patients [17]. These effects were correlated with the up-regulation of proteins related to cholesterol homeostasis, protection against oxidation, blood [18] and enhanced superoxide dismutase-mediated DNA protection against oxidation [19]. Other publications indicated that the intake of EVOO enriched with its own phenols increased the serum HDL cholesterol and enhanced macrophage cholesterol efflux in vivo [20]. More recently, we have demonstrated that the incorporation of diallyl sulfide (DAS) into EVOO boosted its antioxidant, anti-inflammatory and hepatoprotective effects in mice [13]. The DAS is one of the chief organosulfur compounds of garlic [50] and is boundless field, notably focusing on the isolation and purification process, analytical and authentication techniques, conception of new EVOO-based products and their biological properties [13]. In the latter case, the available data showed that enrichment of EVOO could represent an attractive option not only for ensuring an optimal intake of EVOO polyphenols but also for the development of new functional foods with better oxidative stability [14], good sensory attributes and improved biological activities [15]. In terms of bioactivity, a previous pharmacokinetic study showed that enrichment of EVOO with its own phenolic compounds significantly increased their bioavailability and their concentrations in human plasma [16].

Later, a randomized controlled trial showed that the consumption of EVOO enriched with its own phenolic compounds improved endothelial function through the increased ischemic reactive hyperemia and reduced oxidized LDL in hypertensive patients [17]. These effects were correlated with the up-regulation of proteins related to cholesterol homeostasis, protection against oxidation, blood [18] and enhanced superoxide dismutase-mediated DNA protection against oxidation [19]. Other publications indicated that the intake of EVOO enriched with its own phenols increased the serum HDL cholesterol and enhanced macrophage cholesterol efflux in vivo [20]. More recently, we have demonstrated that the incorporation of diallyl sulfide (DAS) into EVOO boosted its antioxidant, anti-inflammatory and hepatoprotective effects in mice [13]. The DAS is one of the chief organosulfur compounds of garlic [50] and is

2. Materials and Methods

2.1. Reagents and materials

Acetic acid, alloxan monohydrate, ammonium molybdate, bovine serum albumin (BSA), diallyl sulfide (DAS), 5,5-dithio-bis-2-nitrobenzoic acid (DTNB), sodium phosphate, trichloroacetic acid (TCA) and Tris-HCl were purchased from Sigma-Aldrich (Steinheim, Germany). Solvents of analytical grade were purchased from Carlo Erba Reactif-CDS (Val de Reuil, France).

2.2. Preparation of the DAS enriched EVOO

The DAS-rich EVOO was prepared by a direct addition of DAS (1%, v/v) to the mono-varietal “Chemlali” EVOO as previously described [13].

2.2. Experimental animals and diets

Male Suisse albino mice (weight 30 ± 5g) were purchased from the Society of Pharmaceutical Industries, Ben Arous, Tunisia) and housed under standard housing conditions (22 ± 2°C; relative humidity 50% and 12 h light/dark cycle). They were fed commercial pellet diet made up of 12% moisture, 23% crude protein, 3% fat, 2.5% soybean oil, 12% soybean meal, 3% corn gluten meal, 10% fish meal, 10% wheat middling, 1.5% molasses, 7% crude fiber, 0.5% salt, minerals and vitamins (El Badr Uitque-TN, Bizerte, Tunisia) and water ad libitum. All protocols followed in the study were approved by the “Comité d’éthique de la Recherche en Sciences de la Vie et de la Santé” (CER-SVS) at the Institut Supérieur de Biotechnologie de Monastir (ISBM), University of Monastir, (Ethical approval: CER-SVS/ISBM 016/2021).

2.3. Induction of diabetes

For the induction of diabetes, a single intraperitoneal (i.p) injection of alloxan monohydrate (160 mg/kg body weight) was used. Animals with fasting blood glucose levels higher than 13 mM/L at 10th after the injection of alloxan were considered diabetic [23].

2.4. Experimental design

Experimental animals were randomly divided into 6 groups (6 mice each) designated as follows: Normal control receiving basal diet; Diabetic control receiving basal diet; Normal control receiving 500 µL of EVOO; Normal control receiving 500 µL of DAS-rich EVOO; Diabetic mice receiving 500 µL of EVOO; and Diabetic mice receiving 500 µL of DAS-rich EVOO.

After 10 days of induction of diabetes, fresh oil samples were administered orally by gavage once per day for 15 days. At the end of the experiment, mice were anesthetized using anesthetic ether and sacrificed by cervical dislocation. The blood samples were collected into heparin-coated tubes and centrifuged at 3000 × g for 10 min at 4°C. The serum was collected for biochemical estimations.

2.5. Measurement of serum biochemical parameters

The commercial standard enzymatic kit (Biomaghreb, Ariana, Tunisia) detected serum levels of glucose, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase, lactate dehydrogenase (LDH), albumin, urea, uric acid, creatinine, triglycerides (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C). The atherogenic index of plasma (AIP) as a predictor of cardiovascular risk was calculated as the logarithmic transformation of TG to HDL-C ratio and was categorized as: Low (AIP<0.11); Intermediate (0.11<AIP<0.21) and...
High (AIP>0.21) [24].

2.6. Estimation of oxidative stress markers
Malondialdehydes (MDA), H2O2 sulfhydryl group (-SH) were determined in liver and kidney tissues supernatants obtained after homogenization of both organ tissues in 50 mM phosphate buffer saline (KH2PO4/K2HPO4; pH 7.4) followed by centrifugation at 10000 × g for 10 min (4°C). The MDA content was measured according to the method of Draper and Hadley [25]. Briefly, a 1 mL aliquot of the supernatant was mixed with 1 mL of a saturated solution of TBA reagent (0.5 N HCl, 120 mM TBA buffered in 26 mM Tris) and heated in boiling water for 30 min. After cooling, the absorbance of the mixture was measured at 532 nm and the MDA content was determined using the extinction coefficient of the complex TBA-MDA 1.56 × 105 M−1 cm−1.

The H2O2 content was determined following the method of Dingeon et al. [26] by measuring the absorbance at 505 nm of the quinoneimine chromophore which represents the end product of the reaction between hydrogen peroxide with β-hydroxybenzoic acid and 4-aminonitropyridine in the presence of peroxidase.

For the (-SH) group, the method of Ellman [27] was used and the results were expressed as nmol of thiol group per mg protein. Briefly, 100 µL aliquot of supernatant was mixed with 100 µL of 10% SDS and 800 µL of 10 mM phosphate buffer (pH 8) and the absorbance was read at 412 nm (A0). Thereafter, 100 µL of DTNB were added and the reaction mixture was incubated at 37°C for 1 h and the absorbance (A1) was determined. The thiol group (-SH) was determined from the A0 to A1 deduction using the extinction coefficient of 13.6 × 103 mol−1 cm−1.

2.7. Estimation of the activities of antioxidant enzymes
Catalase (CAT; E.C: 1.11.1.6.) activity was determined by surveying the decomposition of H2O2 at 240 nm for 3 min and was expressed as nmol H2O2 decomposed per mg of protein per minute [28]. The reaction mixture contained 33 mM H2O2 in 50 mM phosphate buffer (pH 7.0) and the activity of CAT was calculated using the extinction coefficient of H2O2 (40 mM−1 cm−1).

Glutathione peroxidase (GPx; E.C: 1.11.1.9) activity was measured at 412 nm using the method of Flohé and Günzler [29]. Briefly, a 0.2 mL aliquot of supernatant was mixed with 0.2 mL of phosphate buffer (0.1 M; pH 7.4), 0.2 mL of 4 mM GSH and 0.4 mL of 5 mM H2O2. After incubation at 37°C for 1 min, the reaction was stopped by addition of 0.5 mL of 5% TCA (w/v) and the absorbance of the mixture was determined at 412 nm after addition of 0.5 mL DTNB (10 mM). The GPx activity was expressed as nmol of GSH consumed per min per mg protein.

The ability of superoxide dismutase (SOD, E.C: 1.15.1.1) to inhibit the radical-mediated chain-propagating auto-oxidation of epinephrine in alkaline pH medium was determined spectrophotometrically at 480 nm [30]. The reaction mixture (2 mL) consisted 0.2 mL supernatant of 10 µL bovine catalase (0.4 U/mL), 20 µL epinephrine (5 mg/mL) and 62.5 sodium carbonate/bicarbonate buffer pH 10.2. Changes in absorbance were recorded at 480 nm and the activity was reported in units of SOD per mg protein. One unit of SOD activity was defined as the amount of enzyme required to inhibit the rate of auto-oxidation of epinephrine by 50%.

Protein concentration was determined by using the method of Bradford with bovine serum albumin (BSA) as a standard [31].

2.8. Histopathological study
Fresh tissues from liver, pancreas and kidney were immediately excised from sacrificed animals and fixed in 10% neutral buffered formalin solution. Thereafter, fixed tissues were dehydrated in ethanol, embedded in paraffin, sectioned to 4-5 µm thickness, and then stained with hematoxylin and eosin (HE) for observation of pathological changes using an Olympus light microscope (Tokyo, Japan).

2.9. Statistical analysis
Data were expressed as mean ± standard deviation of at least three determinations. Group means were compared using one-way analysis of variance (ANOVA) followed by Tukey’s post-hoc test for multiple comparisons. All analyses were performed using the Statistical Package for the Social Sciences (SPSS v 18.0) software (IBM, Chicago, IL, USA). Results at p<0.05 were considered statistically significant.

3. Results
3.1. Serum biochemical markers
Data from Table 1 showed that intraperitoneal injection of alloxan monohydrate to control mice increased the blood glucose, ALT, AST, alkaline phosphatase, LDH, urea and creatinine by 131, 103, 111.43, 81.2, 39.4, 67.7 and 37.4%, respectively in diabetic control over the non-diabetic control mice. In contrast, it induces 34.2 and 42.3% reduction in albumin and uric acid, respectively. All serum parameters were significantly (p<0.05) normalized after the administration of DAS-rich EVOO and to a lesser extent EVOO. These results suggest that EVOO and DAS-rich EVOO have anti-diabetic effects.

3.2. Plasma lipid profiles
In diabetic mice, there was 83 and 29% increase in plasma triglyceride and plasma cholesterol, respectively over the non-diabetic control (Table 2). The increment of plasma cholesterol was allied to 61% increase in LDL-C versus 27% decrease in HDL-C. These changes will put diabetic animals at high cardiovascular risk as revealed by the 2.5-, 2.24-, and 3.27-fold increase in TC/HDL-C ratio, LDL-C/HDL-C ratio, and the AIP, respectively. These alterations were improved by the ingestion of EVOO and DAS-rich EVOO being significantly (p<0.05) the most efficient in reducing the risk of cardiovascular disease in non-diabetic control and diabetic mice. This indicates that DAS incorporation into EVOO improved its lipid-lowering property.

3.2. Oxidative status
As illustrated in Fig. 1, diabetic animals experienced severe oxidative bursts as revealed by the 36.77 and 62% increase of MDA content in liver (7.81±0.58 nmol/min/mg protein) and kidney (8.44±0.73 nmol/min/mg protein), respectively over the non-diabetic (5.71±0.62 and 5.21±0.54 nmol/min/mg protein in liver and kidney, respectively) control (Fig. 1A). Similar trend was observed for H2O2 which was significantly (p<0.05) increased in liver (1.94-fold) and kidney (2-fold) of diabetic mice (Fig.
In parallel experiments, sulfhydryl groups (SH) in protein cysteine residues were markedly declined (≈35%) in liver (0.82±0.04 mM) and kidneys (0.56±0.03 mM) of diabetic mice, the activity of CAT was decreased by 28 and 40% in liver and kidneys, respectively. For GPx, the activity of CAT was decreased by 28 and 0.88 in liver and kidney, respectively) mice (Fig. 1C). In parallel experiments, sulfhydryl groups (-SH) in protein cysteine residues were markedly declined (≈35%) in liver (0.82±0.04 mM) and kidneys (0.56±0.03 mM) of diabetic mice, the activity of CAT was decreased by 28 and 40% in liver and kidneys, respectively. For GPx, the activity of CAT was decreased by 28 and 0.88 in liver and kidney, respectively) mice (Fig. 1C).

In control and experimental groups of mice.

Table 1. Effect of EVOO and DAS-enriched EVOO on blood glucose level and liver (ALT, AST, AKP and LDH), and kidney (urea, uric acid, albumin, and creatinine) biochemical parameters in control and experimental groups of mice.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Blood glucose (mM)</th>
<th>ALT (UI/L)</th>
<th>AST (UI/L)</th>
<th>AKP (UI/L)</th>
<th>LDH (UI/L)</th>
<th>Urea (mM/L)</th>
<th>Uric acid (mM/L)</th>
<th>Creatinine (µM/L)</th>
<th>Albumin (g/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non diabetic Control</td>
<td>5.97±0.51</td>
<td>33±2.14</td>
<td>35±3.08</td>
<td>101±8.86</td>
<td>876±48</td>
<td>6.74±0.28</td>
<td>0.26±0.02</td>
<td>123±2.88</td>
<td>4.51±0.46</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>13.81±2.3</td>
<td>67±3.24</td>
<td>74±5.22</td>
<td>183±10.63</td>
<td>1221±81</td>
<td>11.3±0.88</td>
<td>0.15±0.01</td>
<td>169±9.46</td>
<td>2.97±0.24</td>
</tr>
<tr>
<td>Non diabetic+DAS- EVOO</td>
<td>6.02±0.46</td>
<td>27±1.83</td>
<td>36±1.42</td>
<td>109±8.54</td>
<td>907±34</td>
<td>7.53±0.69</td>
<td>0.28±0.01</td>
<td>121±4.98</td>
<td>4.54±0.46</td>
</tr>
<tr>
<td>Non diabetic+DAS- rich EVOO</td>
<td>5.63±0.63</td>
<td>27±1.64</td>
<td>33±2.08</td>
<td>104±9.33</td>
<td>886±18</td>
<td>7.69±0.53</td>
<td>0.28±0.01</td>
<td>116±2.24</td>
<td>4.62±0.32</td>
</tr>
<tr>
<td>Diabetic + EVOO</td>
<td>7.54±0.77</td>
<td>41±3.18</td>
<td>51±3.28</td>
<td>123±5.82</td>
<td>983±27</td>
<td>8.13±0.62</td>
<td>0.26±0.01</td>
<td>132±4.92</td>
<td>4.16±0.38</td>
</tr>
<tr>
<td>Diabetic + DAS-rich EVOO</td>
<td>6.79±0.27</td>
<td>37±2.32</td>
<td>46±3.52</td>
<td>118±6.44</td>
<td>946±12</td>
<td>7.79±0.89</td>
<td>0.28±0.01</td>
<td>126±3.72</td>
<td>4.53±0.29</td>
</tr>
</tbody>
</table>

*AKP: alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; LDH: Lactate dehydrogenase; EVOO: Extra virgin olive oil; DAS: Diallyl sulfide. ** Values are mean ± SD of triplicate (n = 3); Means followed by different superscript letters within column are significantly different at p<0.05.

Table 2. Changes in lipid profile in control and experimental groups of mice.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>TC (mM/L)</th>
<th>TG (mM/L)</th>
<th>HDL-c (mM/L)</th>
<th>LDL-c (mM/L)</th>
<th>TC/HDL-c</th>
<th>LDL-c/ HDL-c</th>
<th>AIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non diabetic control</td>
<td>1.84±0.12</td>
<td>0.87±0.06</td>
<td>0.57±0.02</td>
<td>0.54±0.06</td>
<td>3.5±0.22</td>
<td>0.95±0.06</td>
<td>0.18±0.02</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>2.38±0.15</td>
<td>1.59±0.18</td>
<td>0.41±0.03</td>
<td>0.88±0.04</td>
<td>8.1±0.64</td>
<td>2.13±0.12</td>
<td>0.59±0.04</td>
</tr>
<tr>
<td>Non diabetic + EVOO</td>
<td>1.82±0.08</td>
<td>0.77±0.08</td>
<td>0.54±0.05</td>
<td>0.59±0.02</td>
<td>3.45±0.42</td>
<td>1.15±0.04</td>
<td>0.17±0.01</td>
</tr>
<tr>
<td>Non diabetic + DAS-rich EVOO</td>
<td>1.68±0.11</td>
<td>0.69±0.04</td>
<td>0.57±0.02</td>
<td>0.54±0.02</td>
<td>2.9±0.33</td>
<td>1.0±0.02</td>
<td>0.08±0.01</td>
</tr>
<tr>
<td>Diabetic + EVOO</td>
<td>2.12±0.09</td>
<td>1.06±0.09</td>
<td>0.47±0.04</td>
<td>0.72±0.08</td>
<td>5.22±0.45</td>
<td>1.55±0.04</td>
<td>0.35±0.02</td>
</tr>
<tr>
<td>Diabetic + DAS-rich EVOO</td>
<td>2.02±0.18</td>
<td>0.95±0.11</td>
<td>0.49±0.05</td>
<td>0.70±0.04</td>
<td>4.47±0.39</td>
<td>1.42±0.08</td>
<td>0.29±0.02</td>
</tr>
</tbody>
</table>

*TC: Total cholesterol; TG: Triglycerides, HDL-c: Digh density lipoprotein chemostere; LDL-c: Low density lipoprotein density; AIP: Atherogenic index of plasma (AIP = [Log TG/HDL-c]). **Values are mean ± SD of triplicate (n = 3); Means followed by different superscript letters within column are significantly different at p<0.05.

3.3. Histopathology

Examination of HE-stained sections of pancreas of control, EVOO-, and DAS-rich EVOO-treated animals showed normal appearance of the pale and well-shaped islet of Langerhans (Fig. 3 A-C). In the alloxan-diabetic group, the islet of Langerhans was irregularly outlined and showed degenerative changes with a decrease in the density of β-cells (Fig.3 D). Some cells are foamy with vacuolated cytoplasm.

Other cells showed nuclear shrinkage and pyknosis. Treatment with EVOO and DAS-rich EVOO significantly reduced these histologic alterations with better recovery being recorded for DAS-rich EVOO (Fig. 3 E, F). Histological examination of the liver samples from the untreated control, EVOO-, and DAS-rich EVOO-treated animals showed normal hepatic architecture and polychedral hepatocytes with regular nucleus and cytoplasm (Fig. 3 G-I). In diabetic animals, noticeable pathological changes including distension of hepatocytes, extended vacuolization, and sinusoid widening were observed in liver (Fig. 3 J). EVOO and DAS-rich EVOO alleviated liver alterations in diabetic mice with the effect being more pronounced with DAS-rich EVOO (Fig. 3 K, L). Microscopic observation
of kidney section of the untreated control, EVOO-treated and DAS-rich EVOO-treated control showed normal appearance of glomeruli which was regularly delimited by the Bowman’s capsule. Proximal convoluted and distal convoluted tubules were well-defined (Fig. 3 M-O). However, the diabetic mice showed glomerular atrophy with consequent congestion, widening of Bowman’s space; thickening of membrane basement and extended vacuolization of mesangial cells (Fig. 3 P). In EVOO and DAS-rich EVOO-treated diabetic mice, these alterations were not evident, and the renal architecture was nearly similar to the untreated control (Fig. 3 Q, R). From the histologic examination, it can be concluded that EVOO and DAS-rich EVOO have pancreatic, hepato-, and renoprotective effects in alloxan-induced diabetic animals. The histo-protective effect of EVOO was markedly improved by the incorporation of DAS.

4. Discussion

Diabetes mellitus (DM) and its associated complications hyperglycemia and hyperlipidemia is one of the most metabolic disorders worldwide. In diabetic patients, the deregulation of the metabolism of carbohydrates, lipids, and proteins as well as the increase in free radical production versus a drop of antioxidant defense is associated with increased risk of vascular, retina, nervous, and renal diseases [32]. For the management of DM, insulin and oral hypoglycemic agents including sulfonylureas (glipizide, glyburide, gliclazide, gliclazide), meglitinides (repaglinide and nateglinide), biguanides (metformin), thiazolidinediones (rosiglitazone, pioglitazone), and α-glucosidase inhibitors (acarbose, miglitol), among others are commonly used [33]. Unfortunately, these agents can cause many adverse effects including hepatotoxicity, nausea, diabetic macular edema, congestive heart failure, abdominal discomfort, mild anorexia, diarrhea, and flatulence [33].
Therefore, the use of bio-based drugs holds promise for the management of DM. Because of its manifest antioxidant, anti-inflammatory and hepatoprotective effects [13], we hypothesized that DAS-rich EVOO may provide a new potential candidate for the management of DM and its associated complications. To test this hypothesis, alloxan-induced diabetes is adopted as a well-established experimental model for the diabetes study. Consequently, the injection of a single diabetic dose of alloxan caused a significant increase of blood glucose and a substantial elevation in the activity of serum markers enzymes ALT, AST, alkaline phosphatase and LDH indicating liver injury. Likewise, renal dysfunction reflected in the increment of the level urea and creatinine was also noticed. The toxic effects of alloxan were further confirmed by histopathological observations showing damages in pancreas (reduction of β-cells number, and extended vacuolization in the islets of Langerhans, nuclear shrinkage and pycnosis of some pancreatic cells), in liver (hepatocytes distension and sinusoid broadening) and in kidney (congested and atrophied glomerules, enlarged Bowman’s space and vacuolated mesangial cells).

Additional analyses showed that these pathophysiological manifestations were intimately linked with enhanced oxidative stress and insufficient antioxidant response. Indeed, a remarkable increase in MDA (a product of lipid peroxidation) and H_2O_2 (indicator of the intensity of oxidative stress and extended production of free radicals) was observed in hepatic and renal tissues of diabetic mice. Concomitantly, the increase in oxidative markers was accompanied by a general decrease of CAT, GPx and SOD indicating their incapacity to counteract the alloxan-induced generation of free radicals and H_2O_2. Accumulation of H_2O_2 and excessive generation of free radicals will lead to enhanced degradation of macromolecules including lipids and proteins as reflected in the elevated MDA content and the drop of (–SH) group causing serious histological alterations in pancreatic, hepatic, and renal tissues in diabetic animals. Alloxan-induced oxidation of (–SH) group has been described as the main mechanism behind the decrease of hexokinase enzyme (a key enzyme responsible for the insulin-dependent catalysis of glucose phosphorylation in pancreatic β-cells and liver) leading ultimately to β-cells destruction and loss of glucose homeostasis [34].

The ingestion of EVOO normalized all serum biochemical markers and alleviated alloxan-induced histopathological alterations in pancreas, liver and kidney indicating its hypoglycemic and histoprotective effects. The hypoglycemic effect of EVOO might be mediated through the recovery or regeneration of pancreatic β-cells and/or their stimulation to produce insulin. The reduction of insulin resistance which leads to improved insulin-mediated suppression of the hepatic production of glucose, and/or enhancing insulin-mediated entry of glucose into muscle, adipocytes and liver tissues was suggested too [35]. A conformational modification of the insulin receptors was reported as the main mechanism behind the antidiabetic effect of oleic acid-rich EVOO [12].

The histoprotective effects of EVOO might be, in turn, associated with its antioxidant activity conferring thus a good protection of hepatocyte and renal tissues against free radicals produced by alloxan. The presence of putative antioxidants acting lonely or in combination could, at least in part, explain the antidiabetic and histoprotective effects of EVOO. Among the active components identified in EVOO, some of them namely phenolic compounds and vitamin E have received particular attention because of their well-recognized antioxidant and antidiabetic activity [8]. Basic research has found that tyrosol can effectively ameliorate streptozotocin-induced diabetes in rats by increasing insulin secretion from remnant β-cells, reducing hyperglycemia-induced production of free radicals, decreasing lipid peroxidation, and improving the activity of antioxidant enzymes [10]. The tyrosol-induced glucose homeostasis was mediated through an increased activity of the key metabolic enzyme’s phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and glucose-6-phosphatase versus a reduction of the activity of hexokinase and glucose-6-phosphate dehydrogenase [36]. Similar observations have been described for cinnamic acid [37] and ferulic acid [38].

The antioxidant-based antidiabetic and histoprotective effects of hydroxytyrosol, oleuropein [39], apigenin [40], luteolin [41], pinocarveol [42], vanillic acid [43] and tocoferols [44] has also been confirmed using both in vitro and in vivo approaches. Common mechanisms of these compounds include the improvement of β-cell functionality, inhibition of lipid peroxidation, stimulation of the activity of antioxidant enzymes (CAT and SOD), reducing insulin resistance, increasing the glucose uptake by peripheral tissues, reducing inflammatory cytokine (tumor necrosis factor-α TNF-α and interleukins IL-1β/IL-6), increasing liver function and insulin signaling pathways, inhibition of hepatic gluconeogenesis, inhibition of α-amylase and α-glucosidase, and reducing protein glycation [45].

The ameliorative effects of EVOO were potentiated by incorporation of DAS presumably through its ability to enhance the antioxidant response and prevent oxidative stress-mediated histopathological damage. The chemoprotective effect of DAS and its metabolites diallyl sulfone (DASO) and diallyl sulfide (DASO₂) has already been reported [22]. The protective effect of these metabolites was mediated through a competitive inhibition of the cytochrome P450-dependant drug metabolizing enzyme CYP2E1 and its associated enzymes namely anilin-4-hydroxylase and p-nitrophenol hydroxylase which are involved in the elimination of xenobiotics like acetaminophen, CCl₄, alloxan, and streptozotocin [22].

Although the mechanism by which DAS-rich EVOO exerts its antidiabetic activity is unknown, most hypothesis point to i) increment of the activity of endogenous antioxidant enzymes CAT, SOD and GPx, ii) declination of lipid peroxidation, iii) protection of pancreatic, liver, and renal tissues from alloxan-induced free radical production, and iv) inhibition of CYP2E1-dependant drug metabolizing enzymes. Evidence supporting the antioxidant and histoprotective effects of DAS is given by Kalayarasan et al. [46] using gentamicin-induced nephrotoxicity in rats as experimental model. In that study, it has been found that DAS improved the antioxidant function through the activation of antioxidants enzymes CAT, SOD, GPx, and glutathione reductase (GR). It also inhibited lipid peroxidation and the expression of pro-inflammatory cytokines (i.e. iNO, NF-κB and TNF-α) conferring thus a better protection of renal tissues against gentamicin-induced nephrotoxicity [39]. In support of these findings, we have recently reported that the incorporation of DAS into EVOO greatly enhanced its antioxidant activity in vitro and effi-
ciently prevented the CCl₄-induced liver injuries in mice and reduced the production of inflammatory cytokines [13]. We have also postulated that the increased antioxidant and its subsequent anti-inflammatory effects of DAS-rich EVOO resulted from the synergistic action between DAS and the native EVOO bioactive components namely phenolic antioxidants, tocopherols, and pigments.

Dyslipidemia, which features elevated serum TG, TC and LDL-C versus a reduced HDL-C is the most important complication associated with alloxan-induced diabetes. These modifications of plasma lipid profile in diabetic animals are generally linked with coronary atherosclerosis, thus increasing risk of cardiovascular diseases [47]. In the present study, the rise of TG, TC, and LDL-C cholesterol levels indicates derangement of lipid metabolism. The decreased HDL-c level owing to its reduced production by intestine and liver, and/or its glycation by elevated glucose concentrations might exacerbate dyslipidemia and ultimately led to and increased incidence of cardiac dysfunction in diabetic mice [48]. To test this assumption, the atherogenic index of plasma (AIP), a reliable predictor of atherosclerosis and coronary heart disease, was calculated. The result indicates that AIP was 3.19-fold higher in alloxan-diabetic animals pointing that they are at high risk of atherosclerotic coronary heart disease. Alterations of the lipid profiles were successfully restored by ingestion of EVOO and DAS-rich EVOO being the most effective.

Despite that the lipid-lowering property of EVOO [46], phenol-enriched EVOO [17], garlic oil and its derived organosulfur compounds (diallyl disulphide (DADS) and diallyl trisulfide (DATS)) has been repeatedly described [49, 50], no data is available on the effect of DAS-rich EVOO on the lipid profile of diabetic animals. Considering the unique publication pointing to the incapacity of DAS to lower the lipid accumulation in 3T3-L1 adipocytes [51], it is plausible to hypothesize that the manifest amelioration of lipid profile in response to DAS-rich EVOO resulted from the synergistic effects of DAS with other EVOO components having a lowering lipid property. The hypolipidemic effect of some components present in EVOO has been reported in literature. In a previous study, Pal and colleagues [52] reported that the α-tocopherol significantly decreased the cholesterol content in human HepG2 hepatoma cells either by a competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), a rate-limiting enzyme for cholesterol metabolism including FAβO (a key enzyme that promote the oxidation of fatty acids) and cholesterol 7α-hydroxylase (CYP7A1, a rate-limiting enzyme that converts cholesterol in non-hepatic tissues to bile acids) in addition to its inhibitory effects on HMG-CoAR, hepatic lipase (HL, enzyme responsible for the clearance of TG from VLDL pools) and diacylglycerol acyltransferase (DGAT, enzyme responsible for the synthesis of triacylglycerol through the catalytic binding of diacylglycerol and acyl fatty acids).

Even though our study does not provide a realistic appraisal of the mechanism of action of the hypolipidemic activity of DAS-rich EVOO, the hypothesis of a synergistic action between DAS and other bioactive components in EVOO makes sense. In support of this conclusion, we have previously reported that DAS synergistically improves the anti-inflammatory effect of EVOO in CCl₄-induced liver injuries in mice [13]. More recently, Asdaq et al. [50] showed that DADS-rich garlic oil was more effective than DADS alone in ameliorating dyslipidemia in rats fed high-fat diet. The recognized inhibitory effect of DAS on the activity of fatty acid synthase (FAS) [59] could represent an additional way to empower the activity of putative hypolipidemic components of EVOO. Consistent with these findings, a synergistic antioxidant action between DAS and lipophilic antioxidants like α-tocopherol and β-carotene has been reported [60].

Owing to its lipophilic aspect, antioxidant and preventing lipid peroxidation activity [12], DAS might potentially contribute to the decrease of membrane fluidity which hampers the diffusion and propagation of free radicals thus a good protection of cellular structures from oxidative injuries. The crucial role of the interaction between lipophilic antioxidants and lipid bilayers in stabilizing biological membranes and their components from oxidative damage has been extensively studied and reviewed [61]. In this context, it has been reported that the modification of biophysical properties of the lipid bilayer (decreased membrane fluidity) is one of the main mechanisms underlying the antimicrobial, antiplatelet and anti-proliferative effects of DAS [62-65].

Consequently, it is plausible to propose that DAS can effectively stabilize the lipid bilayer and abrogate lipid peroxidation and the propagation of free radicals which will cooperatively improve the antioxidant-mediated antiadipic and anti-hyperlipidemic activities of the bioactive components of EVOO. The membrane-interacting properties of EVOO active ingredients (especially α-, γ-tocopherol, tyrosol, hydroxytyrosol, oleuropein, oleuropein aglycone, ligustrazine, cinnamic acids, ferulic acid, etc.) and their presumed synergistic effects with DAS deserves further atomic-level studies.
5. Conclusions

From the results of this study, it can be concluded that the incorporation of DAS into EVOO enhanced the natural antidiabetic and antihyperlipidemic effects of EVOO, and significantly recovered the adverse metabolic alterations in alloxan-induced diabetic mice. The synergistic effects between DAS and EVOO active compounds leading to the amelioration of serum biochemical parameters, histologic features and oxidative status in diabetic animals have been proposed as underlying mechanisms behind the potentiation of the antidiabetic, anti-hyperlipidemic and histoprotective effects of EVOO by the incorporation of DAS. These results suggest that both DAS and EVOO could be combined to potentiate their beneficial effects and effectively used in alleviating diabetes and its associated comorbidities.

Acknowledgments

This research has been funded by the Scientific Research Deanship at University of Ha'il - Saudi Arabia through project number RG-21 113.

Interest conflict

The authors declare no competing interests.

Consent for publications

The author read and proved the final manuscript for publication.

Availability of data and material

All data generated during this study are included in this published article.

Authors’ Contribution

All authors had equal role in study design, work, statistical analysis and manuscript writing.

Fundings

This research has been funded by the Scientific Research Deanship at University of Ha’il - Saudi Arabia through project number RG-21 113.

References

