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1. Introduction
Diabetic nephropathy (DN) is a chronic kidney disease 

(CKD), which is the leading cause of end-stage renal di-
sease (ESRD) and one of the most dreaded diabetic chro-
nic microvascular consequences [1]. Over the past ten 
years, both Diabetes Mellitus (DM) and DN have shown 
an increase in prevalence. The International Diabetes Fe-
deration reports that there will be 700.2 million diabetics 
worldwide by the year 2045 [2]. Thirty to forty percent of 
DM patients have the potential to progress to DN, and one-
third of DN patients go on to develop ESRD [3,4]. People 
with DN have a mortality rate that is 30 times greater than 
people with DM who do not have kidney disease [1]. The 
population's health and public health are seriously jeopar-
dized. Diabetes nephropathy places a significant strain on 
families and society as a whole, in addition to causing phy-
sical and emotional suffering for the sufferers themselves. 
This changing pattern highlights the urgent need for a tho-
rough understanding of the pathophysiology causing DN.

The gut microbiota is a sophisticated ecosystem made 
up of trillions of bacteria from at least 1000 distinct spe-
cies, as well as other microbial communities [5]. Although 

bacteria make up the majority of the gut microbiota, gut 
microbiota also includes other symbionts such as archaea, 
viruses, fungi, and protists [6,7]. They are involved in a 
number of physiological functions, such as immune regu-
lation, metabolic modulation, and food digestion [8,9]. The 
importance of gut microbiota in preserving human health 
and influencing the course of disease has recently come to 
light thanks to the rapid advancement of gut microbiota 
research [8,10,11].

It is difficult and yet mostly unclear how DN develops. 
There is mounting evidence that the imbalances of the gut 
microbiota contribute to the pathophysiology of DN [12]. 
Fecal samples from DN patients have shown an unbalanced 
gut microbiota, including elevated levels of Proteobacte-
ria, Verrucomicrobia, and Fusobacteria [13]. In addition, 
the abundance of certain organisms in the gut microbiota, 
such as Escherichia coli and Prevotella, is considerably 
different in DN patients compared to Diabetes Mellitus 
(DM) patients without DN [14]. Existing studies have 
also shown that dysbiosis can cause inflammatory reac-
tions by rupturing the gut epithelial barrier, increasing gut 
permeability, allowing pathogenic bacteria to spread, and 
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causing endotoxins to build up. Dysbiosis can also hasten 
the development of DN by affecting lipid metabolism and 
short-chain fatty acid metabolism [15,16]. Therefore, it is 
reasonable to think that there may be a causal relationship 
between intestinal flora and the pathogenesis of DN.

Mendelian randomization (MR) is an innovative 
method to investigate the relationship between the gut 
microbiota and DN in this situation. In order to quantify 
the causal relationship between exposure and disease out-
come, MR constructs instrumental variables of exposure 
using genetic variations [17]. The distribution of geno-
types from parent to child is random, therefore typical 
confounding variables have little impact on the correla-
tion between genetic variations and outcome, and a causal 
sequence is acceptable [18]. MR has been frequently used 
to investigate the relationship between the gut microbiota 
and various diseases, such as rheumatoid arthritis [19], 
autoimmune diseases [20], and metabolic disorders [21].

In conclusion, this study investigates the complex link 
between gut microbiota and DN using MR as a research 
paradigm to identify the causative factor. The findings of 
this work have the potential to significantly improve our 
understanding of the pathophysiology behind DN, paving 
the way to creative recommendations and well-planned 
strategic interventions for disease prevention, detection, 
and treatment.

2. Materials and Methods
2.1. Exposure data source

The worldwide cooperative MiBioGen contributed to 
the Genome-wide Association investigation (GWAS) da-
taset, from which the genetic information for the gut mi-
crobiota used in this investigation was chosen [22]. 18340 
people from 24 cohorts from 18 different nations—inclu-
ding the USA, Canada, Israel, South Korea, Germany, 
Denmark, the Netherlands, Belgium, Sweden, Finland, 
and the UK—were a part of this extensive GWAS. The 
dataset included genotyping and sequencing profiles for 
the 16S ribosomal RNA gene [22]. The goal of the study 
was to look at the relationship between human autosomal 
genetic variations and the make-up of the gut microbiota. 
A large collection of 211 taxa was examined, comprising 
131 genera, 35 families, 20 orders, 16 classes, and 9 phyla.

2.2 Outcome data source
Two DN GWAS summary data were taken from publi-

cally accessible GWAS analyses (IEU [MRC Integrative 
Epidemiology Unit] OpenGWAS Project, https://gwas.mr-
cieu.ac.uk/) during the discovery phase. Europeans made 
up the locals. Table 1 here offers comprehensive details on 
the datasets.

2.3. Instrument variable selection
This study looked at the five hierarchical levels of phy-

lum, class, order, family, and genus for bacterial species. 
Each unique taxon was regarded as a feature. Several qua-

lity control procedures were used to choose the most sui-
table instrumental variables (IVs) in order to guarantee the 
accuracy and validity of the findings on the causal link 
between gut microbiota and DN risk.

Single nucleotide polymorphisms (SNPs) with measu-
rable links to the gut microbiota were first selected as IVs. 
The selection of the IV was done using two criteria. The 
first threshold included choosing SNPs as IVs that were 
less significant than the genome-wide threshold of 5 × 10-8 
[23]. But because of the initial selection, only a few gut 
microbiotas were given serious consideration as IVs. To 
get more thorough data and investigate further connec-
tions between cancer and gut microbiota, a second thres-
hold was used. As the second batch of IVs, SNPs below 
the locus-wide significance threshold of 1 × 10-5 [23] were 
chosen to look for probable causal relationships.

To guarantee the IVs utilized in the MR analysis were 
of high quality, several measures were performed. First, a 
minor allele frequency (MAF) threshold of 0.01 was ap-
plied to the variations of interest [24]. It was also critical 
to determine whether linkage disequilibrium (LD) existed 
among the IVs because severe LD might generate bias. 
The LD between the chosen SNPs was assessed using a 
clumping procedure with settings r2 < 0.01 and clumping 
distance = 10,000 kb [25].

Ensuring that the effects of the SNPs on the exposure 
are consistent with the same allele effects on the outcome 
is an important additional step in MR analysis. Palindro-
mic SNPs (such as those with A/T or G/C alleles) were 
eliminated to prevent any distortion brought on by strand 
orientation or allele coding. Alleles were matched with the 
human genome reference sequence during the harmoniza-
tion phase, and ambiguous or redundant SNPs were elimi-
nated.

We used the Mendelian randomization pleiotropy resi-
dual sum and outlier (MR-PRESSO) [26] and Mendelian 
randomization-Egger (MR-Egger) [27] regression tests to 
evaluate the potential horizontal pleiotropy effect. Each 
SNP's pleiotropy significance was determined using the 
MR-PRESSO outlier test, while the MR-PRESSO global 
test determined the p-value for the total horizontal pleio-
tropy. SNPs were successively eliminated in ascending 
order according to their MR-PRESSO outlier test p-va-
lues. The MR-PRESSO global test was performed on the 

GWAS-ID* Ncontrol Ncase No. SNPs Ethnicity
finn-b-DM_NEPHROPATHY 210,463 3,283 16,380,453 European
finn-b-DM_NEPHROPATHY_EXMORE 181,704 3,283 16,380,453 European

* The GWAS ID in the IEU OpenGWAS project refers to the distinctive identification for each individual GWAS 
research. It makes a distinction between various studies and offers access to the data and outcomes related to them.

Table 1. DN GWAS datasets were used in this study.

Fig. 1. Instrumental variable selection process.
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without adjusting for multiple testing. Eight genera of gut 
bacteria (90 SNPs) were associated with causal links in the 
DN data from finn-b-DM_NEPHROPATHY_EXMORE. 
There was no sign of weak instrument bias, according 
to the F-statistic values for the IVs, which varied from 
22.0953 to 23.1333 and were all more than 10. Additio-
nally, the MR-PRESSO test finds the evidence of pleio-
tropy (PCochrane_Q > 0.05) of class Gammaproteobacteria in 
finn-b-DM_NEPHROPATHY database and we removed it 
from this research. 

According to the results of the MR analysis, the gut 
microbiota linked to DN risk was nearly identical in the 
two datasets. For instance, the genus Intestinimonas was 
linked to a lower incidence of DN in the finn-b-DM_NE-
PHROPATHY dataset (OR=0.494, 95%CI=0.283-0.863) 
and the finn-b-DM_NEPHROPATHY_EXMORE dataset 
(OR=0.494, 95%CI=0.282-0.868). The genus Marvin-
bryantia, however, was linked to a higher risk of DN in the 
finn-b-DM_NEPHROPATHY dataset (OR=1.369, 95% 
CI=1.045-1.794) and the finn-b-DM_NEPHROPATHY_
EXMORE dataset (OR=1.353, 95% CI=1.030-1.777). The 
family Peptostreptococcaceae (OR=1.277, 95%CI=1.005-
1.622) and genus Lachnospiraceae UCG001 (OR=1.249, 
95%CI=1.012-1.542) were shown to increase the risk of 
DN in the finn-b-DM_NEPHROPATHY_EXMORE data-
set, although these associations were not seen in the finn-
b-DM_NEPHROPATHY dataset. Additionally, order Lac-
tobacillales (OR=0.748, 95%CI=0.563-0.993) was seen 
in the finn-b-DM_NEPHROPATHY dataset to reduce the 
incidence of DN, however this was not seen in the finn-
b-DM_NEPHROPATHY_EXMORE dataset. The entire 
unadjusted MR analysis findings from the two datasets are 
shown in Table 2 (in the end of the document). 

3.2. The adjusted MR analysis results
In order to identify bacterium species with numerous 

SNPs, we used the widely used MR analysis approach for 
species while taking into account different correction stra-
tegies. The significance thresholds at various taxonomic 
levels were established as follows in the SNP set with a 
genome-wide significance threshold (1×10-6) as IVs: phy-
lum P = 5 × 10-2 (0.05/1), class P = 5 × 10-2 (0.05/1), order 
P = 2.5 × 10-2 (0.05/2), family P = 1.25 × 10-2 (0.05/4), and 
genus P = 4.54 × 10-3 (0.05/11). In the end, 10 different gut 
microbiota showed causative relationships with DN. 

The gut microbiota associated with DN risk was still 
almost same in the two datasets. According to the fin-
dings of the MR study, the class Bacteroidia (OR=1.384, 

remaining SNPs after each SNP was eliminated. Until the 
P-value for the overall test was not significant (P > 0.05), 
this recursive process was repeated. The final list of SNPs 
was used for the subsequent MR analysis and was free of 
pleiotropic SNPs [26]. Figure 1 illustrates the detail of ins-
trumental variable selection.

2.4. MR analysis
We used a range of statistical approaches, including 

the fixed/random-effects inverse variance weighted (IVW) 
test [28], weighted mode [29], MR-Egger regression [27], 
weighted median estimation (WME), and MR-PRESSO 
[26], to quantify the probable causal link between the gut 
microbiota and DN. Since the lVW technique offers the 
most precise effect estimate, we utilized it as the primary 
analysis. The IVW test was almost always the primary 
methodology in meta-analyses. In order to get the princi-
pal cause estimate, the lVW approach first computes the 
ratio estimates of each SNPs using the Wald estimator and 
Delta technique [28]. The heterogeneity between the cho-
sen SNPs will be evaluated using Cochran's Q-test [30]. 
The random effects IVW approach was used if there was 
heterogeneity among these SNPs (p< 0.05); otherwise, the 
fixed effect IVW method was applied.

We first performed a sensitivity analysis to evaluate 
the robustness of the association before estimating the 
association using the weighted median method because it 
can give a more accurate estimate of causal effects in the 
absence of effective tools. The results of the IVW method 
are susceptible to effective tools and potential pleiotropic 
effects. Effective causal impact estimates can be produced 
when the information derived through invalid instruments 
accounts for less than 50% of the data. The possibility of 
horizontal pleiotropy of SNPs exists if the P-value of the 
intercept is less than 0.05.

We searched the GWAS Catalog (http://www.ebi.ac.uk/
gwas, last accessed on August 27, 2023) for the potential 
secondary phenotypes of each SNP used as an IV in or-
der to further evaluate the impact of potential directional 
pleiotropy. After excluding these SNPs, the analysis would 
be redone if the overlapping SNPs were discovered. Odds 
ratios (ORs) and 95% confidence intervals (CIs) were used 
to show the relationships between the microbiota in the 
human gut and the risk of DN. R version 4.3.1 (https://
www.r-project.org/) and the "Mendelian Randomization", 
"TowSampleMR", and "MRInstruments" packages were 
used for all MR studies.

3. Results
After eliminating palindromic SNPs, we discovered 

937, 1,576, 1,583, 2,390, 6,525 and 739 SNPs connected 
to the gut microbiota at the phylum, class, order, family, 
genus, and species levels, respectively. The suggestive 
significance threshold of p < 1.0×10-5 was used to deter-
mine the relevance of these connections. The full MR 
results obtained through different methods are shown in 
Figure 2.

3.1. The unadjusted MR analysis results
We used MR analysis to look at the relationship 

between two DN databases and gut microbial communities 
following a set of quality control procedures. The DN data 
from finn-b-DM_NEPHROPATHY demonstrated signifi-
cant relationships with 7 genera of gut bacteria (78 SNPs) 

Fig. 2. Circular heat map of full MR result. * Part A is the result from 
finn-b-DM_NEPHROPATHY database and part B is the result from 
finn-b-DM_NEPHROPATHY_EXMORE database.
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Gut microbiota Method NSNPs* Odds 
Ratio 95% CI† P-value F-value R2 PCochrane_Q‡

finn-b-DM_NEPHROPATHY
genus Intestinimonas MR Egger 16 0.494 0.283-0.863 0.0266 22.1363 0.0242 0.3692 
genus Marvinbryantia IVW 10 1.369 1.045-1.794 0.0226 22.3123 0.0154 0.8396 
genus Ruminococcus 
gauvreauii group IVW 11 0.735 0.551-0.981 0.0365 22.4558 0.0170 0.2388 

class Verrucomicrobiae IVW 11 1.444 1.135-1.836 0.0028 22.4720 0.0170 0.5696 
order Bacteroidales WM 13 1.582 1.052-2.377 0.0275 21.3743 0.0191 0.1993 
order Bacteroidales IVW 13 1.384 1.004-1.908 0.0475 21.3743 0.0191 0.1993 
order Lactobacillales IVW 15 0.748 0.563-0.993 0.0448 22.2733 0.0228 0.1972 
order Rhodospirillales MR Egger 14 2.714 1.317-5.593 0.0191 21.7400 0.0209 0.3142 
order Verrucomicrobiales IVW 11 1.444 1.135-1.836 0.0028 22.4720 0.0170 0.5696 
phylum Proteobacteria IVW 12 0.714 0.542-0.941 0.01665 21.3675 0.0176 0.9827
class Bacteroidia WM 13 1.582 1.054-2.374 0.0270 21.3743 0.0191 0.1993
class Bacteroidia IVW 13 1.384 1.004-1.908 0.0475 21.3743 0.0191 0.1993
family Rhodospirillaceae MR Egger 15 3.036 1.449-6.359 0.0114 21.6679 0.0222 0.3161
family 
Verrucomicrobiaceae IVW 11 1.444 1.135-1.836 0.0028 22.4606 0.0170 0.5688

genus Akkermansia IVW 11 1.443 1.135-1.836 0.0028 22.4832 0.0170 0.5687
genus Catenibacterium IVW 4 1.278 1.023-1.596 0.0306 21.3812 0.0059 0.9751
genus Coprococcus1 WM 11 1.509 1.065-2.140 0.0208 22.3817 0.0169 0.8857
genus Coprococcus1 IVW 11 1.368 1.046-1.789 0.0222 22.3817 0.0169 0.8857
genus Eubacterium 
ventriosum group IVW 15 0.767 0.604-0.975 0.0301 21.9701 0.0225 0.9707

finn-b-DM_NEPHROPATHY_RXMORE
class Gammaproteobacteria WM 6 0.486 0.277-0.855 0.0123 22.0953 0.0091 0.4506 
genus Intestinimonas MR Egger 16 0.494 0.282-0.868 0.0278 22.1363 0.0242 0.3328 
genus Lachnospiraceae 
UCG001 IVW 12 1.249 1.012-1.542 0.0382 22.5828 0.0186 0.5706

genus Marvinbryantia IVW 10 1.353 1.030-1.777 0.0297 22.3123 0.0154 0.8224
genus Ruminococcus 
gauvreauii group IVW 11 0.733 0.540-0.993 0.0452 22.4558 0.1699 0.1771

class Verrucomicrobiae IVW 11 1.457 1.143-1.857 0.0024 22.4720 0.0170 0.5056
order Bacteroidales WM 13 1.594 1.080-2.352 0.0188 21.3743 0.0191 14.6092
order Bacteroidales IVW 13 1.412 1.025-1.945 0.0350 21.3743 0.0191 14.6092
order Rhodospirillales MR Egger 14 2.458 1.187-5.093 0.0323 21.7400 0.0209 0.4004
order Verrucomicrobiales IVW 11 1.457 1.143-1.857 0.0024 22.4720 0.0170 0.5056
phylum Proteobacteria IVW 12 0.713 0.540-0.941 0.0170 21.3675 0.0176 0.9689
family 
Peptostreptococcaceae IVW 13 1.277 1.005-1.622 0.0451 23.1333 0.0206 0.3599

class Bacteroidia WM 13 1.594 1.089-2.335 0.0166 21.3743 0.0191 0.2154
class Bacteroidia IVW 13 1.412 1.025-1.945 0.0350 21.3743 0.0191 0.2154
family Rhodospirillaceae MR Egger 15 2.765 1.313-5.826 0.0191 21.6679 0.0222 0.3531
family 
Verrucomicrobiaceae IVW 11 1.457 1.143-1.857 0.0024 22.4606 0.0170 0.5049

genus Akkermansia IVW 11 1.457 1.143-1.857 0.0024 22.4832 0.0170 0.5052
genus Catenibacterium IVW 4 1.298 1.037-1.624 0.0227 21.3812 0.0059 0.9963
genus Coprococcus1 WM 11 1.560 1.090-2.234 0.0151 22.3817 0.0169 0.8736
genus Coprococcus1 IVW 11 1.392 1.061-1.825 0.0168 22.3817 0.0169 0.8736
genus Eubacterium 
ventriosum group IVW 15 0.756 0.594-0.963 0.0233 21.9701 0.0225 0.9868

*NSNPs: Number of SNPs. †95%CI: The 95% Confidence Interval of odd ratio. ‡ PCochrane_Q: P value for the Cochrane Q test.

Table 2. Complete MR analysis results without adjustment for significance (should be inserted at line 249).
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95%CI=1.004-1.908 in finn-b-DM_NEPHROPATHY 
database; OR=1.412, 95%CI=1.025-1.945 in finn-b-DM_
NEPHROPATHY_EXMORE database by IVW method), 
class Verrucomicrobiae (OR=1.444, 95%CI=1.135-1.836 
in finn-b-DM_NEPHROPATHY database; OR=1.457, 
95%CI=1.143-1.857 in finn-b-DM_NEPHROPA-
THY_ EXMORE database), order Verrucomicrobiales 
(OR=1.444, 95%CI=1.135-1.836 in finn-b-DM_NE-
PHROPATHY database; OR=1.457, 95%CI=1.143-1.857 
in finn-b-DM_NEPHROPATHY_EXMORE database), 
order Bacteroidalesa (OR=1.594, 95%CI=1.080-2.352 
in finn-b-DM_NEPHROPATHY_ EXMORE database), 
order Rhodospirillales (OR=2.714, 95%CI=1.317-5.593 
in finn-b-DM_NEPHROPATHY database), family Ver-
rucomicrobiaceae (OR=1.444, 95%CI=1.135-1.836 
in finn-b-DM_NEPHROPATHY database; OR=1.457, 
95%CI=1.143-1.857 in finn-b-DM_NEPHROPATHY_
EXMORE database), family Rhodospirillales (OR=3.036, 
95%CI=1.449-6.359 in finn-b-DM_NEPHROPA-
THY database) and genus Akkermansia (OR=1.443, 
95%CI=1.135-1.836 in finn-b-DM_NEPHROPATHY 
database; OR=1.457, 95%CI=1.143-1.857 in finn-b-
DM_NEPHROPATHY_EXMORE database) among them 
showed possible risk factors for the emergence and pro-
gression of DN. On the other hand, the phylum Proteobac-
teria (OR=0.714, 95%CI=0.542-0.941 in finn-b-DM_NE-
PHROPATHY database; OR=0.713, 95%CI=0.540-0.941 
in finn-b-DM_NEPHROPATHY_EXMORE database) and 
class Gammaproteobacteria (OR=0.486, 95%CI=0.277-
0.855 in finn-b-DM_NEPHROPATHY_EXMORE data-
base) revealed a specific defense against DN. The full fin-
dings of the modified MR analysis are as shown in Figure 
3.

4. Discussion
The purpose of this study was to look into the connec-

tion between certain gut flora and the risk of getting DN. 
We have uncovered many critical findings that suggest a 
specific causal association between gut microbiota and the 
progression of DN by a rigorous MR analysis and meta-
analysis of DN-related gut microbiota data from two pu-
blicly accessible GWAS databases.

In our analysis results, there were 8 risk factors and 
2 beneficial factors for DN. Among them, class Bacte-
roidia, order Bacteroidales, family Verrucomicrobiaceae 
and genus Akkermansia were suggested as a risk factor for 
DN, which is coincident to the existing experiment results 
[13,31-36]. 

Furthermore, based on our findings, Bacteroides is a 
risk factor. It could result in an increase in trimethyla-
mine-N-oxide, Lipopolysaccharide (LPS), phenyl sulfate, 
and indoxyl sulfatec, which have been linked to insulin 
resistance, inflammation, oxidative stress, and fibrosis as 
well as renal dysfunction by activating renin-angiotensin-
aldosterone system and the endothelin system [32,33].

However, the finding that phylum Proteobacteria is 
a risk factor is in conflict with the existing conclusion 
[13,31,37]. The study done by Hu et al. indicated that the 
severity of DN is highly correlated with the quantity of 
LPS produced by Proteobacteria, a Gram-negative bac-
terium, which raises the oxygen level in the lumen and 
causes an unbalanced structure in the gut [38]. This diffe-
rence may be caused by the insufficient sample size of the 
data we used and the single race.

In addition, our results suggest that class Gamma-
proteobacteria is a protective factor for DN while class 
Verrucomicrobiae, order Verrucomicrobiales, order Rho-
dospirillales and family Rhodospirillaceaeare are also risk 
factors for DN. However, there is no relevant research. 
Therefore, our findings provide a new direction and new 
ideas for the subsequent study of DN. 

It is vital to stress that our work made use of MR, a 
reliable technique for examining causal correlations using 
genetic data. To clarify the precise molecular pathways by 
which these gut microbiota genera affect the risk of DN, 
more mechanistic researches are required. Future studies 
can further investigate the discrepancies between our fin-
dings on the genus Akkermansia and those of other studies, 
as well as the unstudied areas that we have pointed out.

It is also to recognize any potential limitations of this 
study, though. Limitations in sample size, demographic 
variety, or generalizability are a few examples of these. 
While useful for determining causal linkages, the study's 
use of Mendelian randomization analysis may also have 
some inherent drawbacks. To confirm the results and give 
a more thorough knowledge of the gut microbiota's func-
tion in MR, more research with bigger sample numbers, 
various demographics, and other analytical techniques are 
required.

5. Conclusion
In conclusion, research examining the connection 

between DN and gut microbiota has shed light on impor-
tant issues. These findings draw attention to particular bac-
terial genera that are either more or less likely to cause DN. 
Numerous variables, such as the metabolites that these 
bacteria generate, might be blamed for these relationships.

Most of our findings are consistent with the existing 
research findings, but there are some differences with the 
existing results on the association between phylum Proteo-
bacteria and DN, which means that more research is still 
required to broaden and confirm these findings. Investiga-
ting potential processes, carrying out longitudinal studies, 
looking into intervention options, and using a multi-omics 
approach may be future research avenues. Furthermore, 
our findings also point to a few unexplored possible study 
paths for DN in the future. These initiatives may improve 
our comprehension of the intricate relationships between 
gut microbiota and DN and pave the way for more precise 
prevention and treatment methods.

It is critical to recognize any potential restrictions, such 
as those caused by sample size, population variety, and 
analytical techniques. To improve the evidence and correct 
any weaknesses, more studies of various populations and 
alternative methodologies are required.

Fig. 2. Forest plot of the adjusted MR analysis result.
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