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1. Introduction
The increasing demographic trend of obesity is po-

sing a major challenge to the world's health systems and 
becoming a novel medical condition within developing 
countries. The prevalence of obesity increased dramati-
cally over the past five decades, and the pandemic of CO-
VID-19 further exacerbates weight gain [1]. According to 
the latest data from NCD Risk Factor Collaboration, 39% 
of the global adult population was classified as overweight 
in 2016 [2]. It is predicted that over 2 billion children and 
adolescents will suffer from obesity by 2025, and China 
will rank in the top population of obese children [3]. Ex-
cessive deposit of body fat could increase the risk of car-
diovascular diseases [4], metabolic disorders [5], and even 
tumorigenesis [6,7]. Abnormal adipose accumulation im-
pairs the metabolism of lipoproteins and triglyceride and 
also induces an inflammatory microenvironment, resulting 
in a higher risk of cancer occurrence and aggression [8]. 
Lipids are not only exploited as building blocks for can-
cer cell membranes and energy sources but also severed 
as cancer cell protectants by scavenging overwhelming 

aggregation of reactive oxygen species (ROS) [9]. Emer-
ging evidence has suggested the underlying connections 
between obesity and numerous malignant diseases [10].

Over the past two decades, the global incidence of 
thyroid carcinoma in children and adolescents aged 0–19 
years has kept climbing [11,12]. Most clinical studies 
indicated the positive connections between obesity and a 
higher incidence of papillary thyroid cancer (PTC), sug-
gesting it is becoming the most common endocrine-rela-
ted malignancy disease [13-16]. Multiple obesity-related 
complications contribute to the development of thyroid 
cancer, including diabetes, metabolic syndrome, and insu-
lin resistance. Overweight thyroid carcinoma patients are 
likely to have lymph node invasion and multifocal lesions, 
even with an increased risk of recurrence after tumor-re-
section surgery [16-18]. The inflammation state caused by 
hypertrophic adipocytes is considered the major trigger of 
endocrine-related cancer. Perpetuated vicious feedback 
between pro-inflammatory adipokines and immune cells 
secretome promotes the development of thyroid cancer 
[19]. Newly research indicated that hypoadiponectinemia 
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within obesity seems to be a predisposing factor for thy-
roid cancer [20]. Although there is no evidence of direct 
impact when recombinant adiponectin was exerted on 
thyroid carcinoma cell lines in vitro, several clinical stu-
dies have reported lower circulating adiponectin levels 
in patients with thyroid cancer [6]. As a preventable and 
curable disease, enormous progress has been made in the 
development of anti-obesity medications and weight-redu-
cing management patterns [21].

Pathological state after obesity allied with radiation 
and other risk factors together interfere with the transcrip-
tomes of gland cells and induce thyroid cancer. Genomic 
analysis is a promising approach to distinguish the charac-
terization between radiation-induced and sporadic thyroid 
carcinoma [22]. DNA methylation is often involved in im-
portant biological functions, affecting embryonic develop-
ment, cell differentiation, disease and even tumor progres-
sion [23,24]. In human beings, hypermethylation in the 
promoter region often inhibits gene expression, while hy-
permethylation in the gene body (including 5'UTR, exon, 
3'UTR, and intron) region often promotes gene expression 
[25]. Transcriptome sequencing can depict the expression 
state of transcripts in each biological process, quantifying 
and integrating the variations by bioinformatics methods 
[26,27]. 

We combined transcriptome analysis of subcutaneous 
adipose tissue (SAT) from normal-weight people, obesity, 
and cancerous tissue from PTC in order to investigate the 
reasons why obese people are more susceptible to PTC 
and to identify the transcriptional regulatory mechanisms 
between obesity and PTC. Through the analysis of the 
DNA methylation data and single-cell RNA sequences 
(scRNA-seq), the similar regulatory patterns that exist 
between them are explained in order to serve as a founda-
tion for future therapeutically pertinent research.

2. Materials and methods 
2.1. Data processing 

Initially, the whole transcriptome data of SAT of 26 
healthy and 35 obese people (GSE205668) and the trans-
criptome of tumor tissue samples from 16 patients with 
PTC (GSE165724) were obtained from the GEO database. 
CpGs sites file of thyroid malignant nodules and normal 
adjacent thyroid tissue (GSE107738) were obtained from 
the GEO database. Single-cell data of PTC (GSE191288), 
while single-cell data for the SAT in obesity (GSE163830) 
(Figure 1).

2.2. Analysis of inter-sample correlation and differen-
tially expressed genes

After normalizing the expression matrix using the 
vst function from the R package DEseq2 (V.1.36.0), we 
measured the correlation between samples. Next, prin-
cipal component analysis (PCA) by using prcomp func-
tion after the dist function to get the Pearson distance 
between samples. Analyze the differentially expressed 
genes in the gene counts matrix using the DESeq function 
in DEseq2 (V.1.36.0). P-value 0.05 & (log2FoldChange 
>= 2 | log2FoldChange <= -2) is the threshold for deter-
mining DEGs, whereas P-value 0.05 & (log2FoldChange 
>= -2 & log2FoldChange <= 2) is the threshold for iden-
tifying common genes. The R package EnhancedVolcano 
(V.1.14.0) is used to draw the volcano map.

2.3. Gene set variation analysis (GSVA)
To measure counts per million (CPM) and carry out 

log2 processing, use the cpm function of the R package 
edgeR (V.3.38.4). GSVA was carried out on these genes 
using the R package GSVA (V.1.44.5), and the reference 
gene sets were chosen from the C5 (ontology gene sets) 
produced from Homo sapiens in the MSigDB database. 
Use the gsva function from the GSVA package, specifying 
method="gsva" and kcdf="Gaussian" for the analysis pa-
rameters.

2.4. Weighted correlation network analysis (WGCNA)
The log2 (cpm+1) matrix of genes served as the input 

file for the WGCNA analysis, which was carried out by 
using the R package WGCNA (V.1.71). The pickSoft-
Threshold function was used to calculate the power value, 
and the blockwiseModules function to measure the Weight 
co-expression network. The clustering between samples is 
seen using the plotDendroAndColors function. The labeled 
Heatmap algorithm presents the relationship between gene 
modules and diseases. The correlation between each gene 
Module was depicted using the plotEigengeneNetworks 
function.

2.5. Gene ontology and KEGG pathway enrichment 
analyses 

The enrichGO function and enrichKEGG function from 
the R package clusterProfiler (V.4.4.4), respectively, are 
used for the analysis of GO terms and KEGG pathways, 
with pvalueCutoff set to 0.05. The cnetplot function is 
used for GO terms-genes network visualization. For pre-
sentation, the R packages ggplot2 (V.3.3.6) and GOPlot 
(V.1.0.2) were also utilized.

2.6. Identification and functional analysis of hub genes
Using the R package ggstatsplot (V.0.9.5), an investi-

gation of the correlations between gene expression levels 
was conducted. The cnetplot function is used for GO 
terms-genes network visualization.

2.7. Construction and verification of prognosis signa-
ture associated

We downloaded the RNA-seq data from TCGA-THCA 
and removed the samples without follow-up information. 
Then, ENSEMBL IDs were converted to gene symbols 

Fig. 1. The workflow of research.
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skeletal system-related pathways (Figure 2B). By analy-
zing the KEGG metabolic pathway, it is possible to see that 
the pathways that are upregulated include Transcriptional 
misregulation in cancer, Cell Adhesion Molecules, Intes-
tinal Immune Network for IgA Production (Figure S1C), 
and the pathways that are downregulated include IL-17 
signaling pathway, Fat Digestion and Absorption, Choles-
terol Metabolism, and other pathways (Figure S1D). 

To further view changes in SAT in obese people, we 
analyzed the DEGs in SAT of healthy and obese people, 
and it was seen from GO and KEGG-enriched pathways 
that obese SAT were mainly highly expressed relative to 
healthy tissues as adaptive-based built domains, differen-
tially involved in proliferation effector process, the mono-
nuclear lymphocyte cell proliferation and other pathways 
(Figure 2C), and down-regulated for carboxylic fatty lipid 
aerobic catabolic, aerobic ATP electron transport, peptide 
insulin hormone stimulus (Figure 2D); The majority of 
the KEGG pathways are connected to regular cell meta-
bolism, and none of them have any practical significance 
(Figure S1E-1F). We used the intersection of the co-ex-
pressed genes in SAT (including healthy and obese people) 
and PTC and DEGs in normal and obese people’s SAT 
(Figure 3A). Further analysis of these co-expressed genes 
revealed that the GO keywords mostly comprise multiple 
immune-related pathways, including those for T cell regu-

and the count value was converted to log2 (cpm+1) in the 
retained data. Afterwards, B-cells regulatory-related genes 
were selected in later analyses. Univariate and multiva-
riate Cox regression analyses and minimum absolute 
contraction and selection operators (LASSO) were used 
to construct prognostic immune-related models to predict 
overall survival in THCA cases. LASSO-Cox regression 
was performed to avoid overfitting, while those closely 
related genes were deleted, and important genes were ex-
tracted from the genes screened by univariate Cox regres-
sion. In addition, the risk score was calculated by multip-
lying gene expression by the linear combined regression 
coefficient obtained by multivariate Cox regression. All 
cases were classified as a high or low-risk group based on 
a median risk score [28].

2.8. DNA methylation analysis
Differentially methylated regions (DMRs) were cal-

led using DSS (V.2.30.1) with default parameters [29]. 
The DMRs detection was based on the DMLs results ( P 
< 0.01). Finally, regions with difference in methylation > 
0.1 were identified as DMRs. The Bioconductor package 
TxDb.Hsapiens.UCSC.hg19.knownGene was used to be 
reference. We annotated DMRs using Bioconductor pac-
kage ChIPseeker [30] (tssRegion=c(-1500,500), flankDis-
tance=5000).

2.9. Single-cell gene expression quantification and clus-
ter classification

The QC process was performed using Seurat (V.4.3.0). 
We removed the low-quality cells with less than 200 
UMIs or with more than 10% mitochondrion-derived UMI 
counts. Batch effects among the patients were eliminated 
using the IntegrateData function in Seurat. The top 30 
principal components, along with the top 2,000 variable 
genes, were used in this process. The ScaleData function 
was then used to regress the influence of UMI counts and 
mitochondria-derived UMI counts percentages. Major 
cell types were then identified using Seurat's FindClus-
ters function and visualized using 2D uniform manifold 
Approximation and Projection (UMAP). The FindAllMar-
kers function was used to list the markers of each cell clus-
ter [31]. The FeaturePlot, VlnPlot, and DotPlot function 
was used to show gene expression.

3. Result 
3.1. The SAT in obesity and PTC had common immune 
regulation genes through the analysis of differentially 
expressed genes (DEGs)

To examine the transcriptional regulation of obesity 
and PTC, we analyzed the PTC and SAT gene expression 
data that were obtained. The samples were consistently 
based on the transcriptome data, but when we investigated 
the PCA of the transcriptome, we could see that the SAT 
and thyroid samples had significant differences in terms of 
transcriptome composition (Figure S1A). The healthy and 
obese people’s SAT was more consistent (Figure S1B). We 
first examined co-expressed genes, and through our ana-
lysis, we were able to see that the genes that were highly 
expressed in PTC in comparison to SAT (including healthy 
and obese people) were mainly enriched in regions like 
transporter activity and immunoglobulin receptor binding 
(Figure 2A), while the low expression GO pathway was 
characterized by activity signaling receptor embryonic 

Fig. 2. Differentially expressed genes in SAT and PTC. (A) The GO 
terms of the up-regulated pathways in PTC compared to SAT. (B) The 
GO terms of the down-regulated pathways in PTC compared to SAT. 
(C) The GO terms of the up-regulated pathways in Obesity compa-
red to Healthy. (D) The GO terms of the down-regulated pathways in 
Obesity compared to Healthy.
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lation, T cell differentiation, immune receptor activity, etc 
(Figure 3B). When we check the KEGG enrichment of 
these genes, we can find that the intersected co-expressed 
genes are primarily enriched in the pathways for Diabe-
tic cardiomyopathy cell cytotoxicity, Biosynthesis amino 
acids cytokine, Glycine Platelet activation serine (Figure 
3C). In summary, our results indicated that obese people 
and PTC cause similar inflammatory reactions.

Further, we looked at the similarities and differences 
in transcriptome information of these data through GSVA. 
Obesity and PTC share a large number of the same genes 
and pathways. When we investigated the pathways that 
were highly expressed in healthy people, we found that 
they were primarily involved in lipid metabolism. In 
contrast, the pathways that were shared by both diseases 
included those that positively regulated interleukin 17 pro-
duction, B-cell proliferation, and a few pathways involved 
in apoptosis (Figure 3D). The several pathways that exer-
cise common cell physiological functions were unnecessa-
ry (Figure S2). It was suggested that the lipid metabolism 
ability of SAT in obesity was decreased, and inflammatory 
and apoptotic changes tended to PTC.

3.2. The SAT in both healthy and obese people and 
PTC have unique transcription patterns through the 
WGCNA analysis

To further explore the co-expressed genes of SAT in 

obese people and PTC, we used WGCNA analysis to clus-
ter all genes in weighted clusters. The three sets of data 
were clustered using the Pearson correlation coefficient, 
and the adjacency matrix and topological overlap matrix 
were constructed using a scale-free network (Figure S3A). 
We created a sample clustering tree (Figure S3B) after 
eliminating the outliers. Nine modules were finally found 
using the average hierarchical clustering and dynamic tree 
cropping (Figure 4A). The genes of the black module are 
significantly connected with the obese group, the genes of 
the blue and yellow modules are highly correlated with the 
healthy group, and the genes of the turquoise module are 
substantially correlated with the PTC group. The distin-
guishing genes were grouped together. The results showed 
that the eight modules could be clustered into three clus-
ters, distinguishing the modules belonging to the three 
groups (Figure 4B). We enriched the GO terms for each 
module gene (Figure 4C).

Meanwhile, further GO terms analysis of the gene in 
the four modules closely related to the three groups re-
vealed that the blue module was significantly associated 
with cartilage development, ribosome biogenesis, connec-
tive tissue development, extracellular matrix organiza-
tion, extracellular structure organization, etc. (Figure 5A); 

Fig. 3. Co-expression of obese SAT and PTC in transcriptome. (A) 
The Venn diagram showed that 564 overlapping genes in SAT and 
PTC co-expressed genes and differentially expressed genes in nor-
mal and obese SAT. (B) The GO terms of 564 overlapping genes. (C) 
The KEGG pathways of 564 overlapping genes. (D) GSVA of healthy 
people, obesity, and PTC.

Fig. 4. WGCNA in SAT of healthy and obesity and PTC. (A) Mo-
dule–trait associations. Each row corresponds to a module, and each 
column corresponds to a trait. Each cell contains the corresponding 
correlation and P value. The table is color-coded by correlation accor-
ding to the color legend. (B) Eigengene dendrogram and eigengene 
adjacency plot. (C) Gene Ontology analysis.
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whereas the yellow module was associated with immune 
diseases such as leukocyte mediated immunity, leukocyte 
migration, leukocyte cell-cell adhesion, immune response 
regulating signaling pathway, immune response−regu-
lating cell surface receptor signaling pathway (Figure 
5B). The black module was associated with cytoplasmic 
translation, ribosome biogenesis, ribosomal large subunit 
biogenesis, ribonucleoprotein complex biogenesis, and ri-
bosome assembly (Figure 5C). The pathways involved in 
cellular secretion, including cilium organization, protein 
localization to the plasma membrane, and magnesium ion 
transmembrane transport, are all closely associated with 
the turquoise module (Figure 5D). These results indicate 
that the transcriptome of the obese group is linked to ribo-
somal changes, whereas the healthy group's transcriptome 
is more sensitive to cellular outcomes and immune regu-
lation, and the transcriptome of the PTC group shows a 
correlation with immune cell transport and secretion.

3.3. B-cells regulatory-related genes can serve as the 
prognostic multi-gene signature for PTC

In order to determine the ultimate co-expression of the 
SAT in obese people and PTC, we conducted an inter-
section analysis of the GSVA genes, co-expressed genes 
obtained from DEGs analysis, and genes in the WGCNA 
modules, and used these intersections for further analy-
sis (Figure 6A). By checking the GO of the co-expres-
sion genes, we focused on the top 6 GO pathways, such 
as B-cell activation, B-cell proliferation, lymphocyte, 
and mononuclear cell proliferation, regulation of B-cell 
activation, and regulation of B-cell proliferation (Figure 
6B), which are all involved in the control of immune and 
inflammatory responses. We further examined the expres-
sion of immune cells in both diseases. The relative abun-
dance of immune cells was examined in obesity and PTC 
using the MCP-counter algorithm. The MCP-counter exa-
mines eight immune cell types (T cells, CD8+T cells, cyto-
toxic lymphocytes, B lineage cells, NK cells, monocytic 
lineage cells, and neutrophils) and 2 stromal cell popu-
lations (endothelial cells and fibroblasts). We found that 
their B lineage and monocytic lineage had higher enrich-
ment abundance (Figure 6C). We hypothesize that the high 
prevalence of PTC in the obese population may be due to 
similar B-cell changes.

In order to further clarify the impact of B-cell regu-
latory-related genes on the prognosis of PTC, 58 genes 
enriched in top B-cell regulatory-related pathways in 
co-expression genes were used for subsequent analysis. 

In TCGA, the transcriptome data of thyroid carcinoma 
(THCA) patients were randomly scored as train and test 
cohorts, with 248 and 247 samples respectively. Based 
on the training cohorts, this study chose 4 genes, Lym-
phoid Enhancer Binding Factor 1 (LEF1), TNF Receptor 
Superfamily Member 13C (TNFRSF13C), Shieldin Com-
plex Subunit 2 (SHLD2) and Shieldin Complex Subunit 3 
(SHLD3) for constructing the prognosis signature via uni-
variate and multivariate Cox regression analysis as well as 
LASSO (Figure 6D-6E). Thereafter, the risk score values 
were calculated according to the following formula: Risk 
score = [LEF1 expression* (0.6311182)] + [TNFRS-
F13C expression * (0.3624955)] + [SHLD2 expression* 
(2.0839631)] + [SHLD3 expression* (0.3430136)]. Based 
on the median risk score, all cases were classified as high- 
or low-risk groups. Also, the area under the curves (AUCs) 
of gene signature for 5-year survival in train, test and all 
cohorts were 0.90, 0.64, and 0.65, respectively (Figure 
6F). Notably, high-risk patients had remarkably reduced 

Fig. 5. Gene ontology analysis of modules related to gene. Gene onto-
logy analysis of the genes involved in the blue module (A), the yellow 
module (B), the black module (C) and the turquoise module (D).

Fig. 6. B-cell regulatory-related genes affected the prognosis of PTC. 
(A) The upset diagram showed that seven algorithms have screened 
out 234+214+15+6 overlapping hub genes in obesity and PTC. (B) 
The GO biological process analyses overlap genes from (A). (C) 
MCP-counter algorithm shows the heatmap of immune cell relative. 
(D) The log value of the independent variable lambda (the abscissa 
represents the confidence interval of each lambda, and the ordinate 
represents errors in cross-validation). (E) The changing trajectory 
of each independent variable (the abscissa represents the corrected 
lambda, and the ordinate represents the coefficient of the independent 
variable). (F) The 5-year ROC curve in train, test and all cohorts is 
based on four-gene signature stratification. (G) The KM (Kaplan-
Meier) survival curve of the four-gene signature-based stratification 
in TCGA training cohorts. (H) Forest plot of univariate Cox analysis. 
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OS relative to low-risk patients in all cohorts (Figure 6G). 
For better exploring the significance of the B-cells regu-
latory related gene signature in independently predicting 
prognosis, univariate analysis was conducted, which re-
vealed that the expression of LEF1, TNFRSF13C, SHLD2 
and SHLD3 might serve as the independent factor for pre-
dicting the prognosis for TCGA-THCA cohorts (Figure 
6H). Taken together, B-cell regulatory-related genes can 
affect the prognosis of thyroid cancer.

3.4. The hypomethylation of the promoter region af-
fects the B-cell regulation of PTC

DNA methylation has been widely considered to regu-
late gene expression and affect the occurrence and deve-
lopment of diseases. To further clarify the reason that 
B-cell regulatory-related genes might regulate PTC pro-
gression, the DNA methylation cpg sites files of thyroid 
malignant nodules and normal adjacent thyroid tissue 
were downloaded from GEO database to analyze DMRs. 
11726 DMRs were identified, and after annotation to re-
move DMRs located in the distal intergenic region, 6599 

DMRs were finally obtained. The malignant nodules had 
2701 hypermethylated DMRs and 3898 hypomethylated 
DMRs compared with normal adjacent thyroid tissue. The 
global levels of DNA methylation in malignant nodules 
DMRs were higher than those in normal adjacent thyroid 
tissue (Figure 7A). Through boxplot of DMRs methy-
lation levels in two groups, it was found that in promo-
ter, exon, intron and 3’UTR genomic regions, the DNA 
methylation levels of malignant nodules were higher than 
those of normal adjacent thyroid tissue (Figure 7B). The 
hypermethylated DMRs in genebody region (including 
5 'UTR, exon, 3' UTR, intron) enrich in GO terms inclu-
ding cell-substrate adhesion (Figure 7C). Unfortunately, 
the hypermethylated DMRs in promoter region did not 
enrich in GO terms. The KEGG pathways of the hyper-
methylated DMRs in both regions are related to axon gui-
dance and parathyroid hormone synthesis, secretion and 
action (Figure S4A). Notably, the GO terms of regulation 
of T cell and leukocytes were shown by hypomethylated 
DMRs in promoter region (Figure 7D). The hypomethy-
lated DMRs in genebody region show proximity to genes 
associated with cell junction assembly and synapse orga-
nization (Figure 7E). The KEGG pathways of the hypo-
methylated DMRs in both regions are related to hormone 
secretion (Figure S4B). In order to further clarify whether 
genes that function regulation of T cell and leukocyte and 
hypomethylated in promoter region were involved in the 
progression of PTC, we performed Protein-Protein Inte-
raction Networks (PPI) analysis of these genes together 
with LEF1, TNFRSF13C, SHLD2 and SHLD3. ACTB, 
SPN and SHLD1 were found to have strong interactions 
with LEF1, TNFRSF13C, SHLD2 and SHLD3 (Figure 
7F). Moreover, IGV analysis showed that the promoter 
regions of ACTB, SPN and SHLD1 were hypomethyla-
ted (Figure 7G). Taken together, we speculated that PTC 
would cause changes in DNA methylation levels, resulting 
in DNA methylation in the promoter region of regulation 
of T cell and leukocyte related genes, thus promoting the 
expression of LEF1, TNFRSF13C, SHLD2 and SHLD3.

3.5. Naive and regulatory B-cells expressing LEF1, 
TNFRSF13C, SHLD2 and SHLD3 participate in the 
transcriptional regulation of the SAT in obesity and 
PTC

We next used scRNA-seq of the SAT in obese indivi-
duals and cancerous tissue in PTC to explain the mecha-
nism of B-cell subtypes regulation of the increased risk of 
PTC in obesity. First, we identified a total of 10 cell subpo-
pulations in the SAT of three obese individuals (Figure 8A 
and Figure S5A). Prognosis-related genes LEF1, TNFRS-
F13C, SHLD2 and SHLD3 were all identified to be highly 
expressed in B-cells (Figure 8B). Plasma cells1, Plasma 
cells2, Naive B-cells, and Regulatory B-cells were the four 
subpopulations of B-cells identified by the SAT in obese 
individuals (Figure 8C and Figure S5B) (marker genes 
were BIRC3, CD27, IGHD, and CD248). The expressions 
of LEF1, TNFRSF13C, SHLD2 and SHLD3 were more 
common in naïve and regulatory B-cells (Figure 8D). To 
determine whether similar B-cell alterations were also pre-
sent in PTC, scRNA-seq was analyzed in six PTC patients 
and one paraneoplastic tissue. A total of 11 cell subpopu-
lations were identified (Figure 8E and Figure S5C), and 
similarly, LEF1, TNFRSF13C, SHLD2 and SHLD3 were 
all highly expressed in B-cells (Figure 8F). Subsequently, 

Fig. 7. The DNA methylation patterns of thyroid malignant nodules 
and normal adjacent thyroid tissue. (A) Distribution of DNA methyla-
tion levels in thyroid malignant nodules and normal adjacent thyroid 
tissue. (B) The DNA methylation levels of DMRs in thyroid mali-
gnant nodules and normal adjacent thyroid tissue. The DNA methy-
lation levels of DMRs at indicated genomic regions in thyroid mali-
gnant nodules and normal adjacent thyroid tissue. *, P < 0.05, ***, P 
< 0.001, ****, P < 0.0001 (Student's t-test). (C) The top enriched GO 
terms of hypermethylated genes of genebody region in thyroid mali-
gnant nodules compared to normal adjacent thyroid tissue. (D) The 
top enriched GO terms of hypomethylated genes of promoter region 
in thyroid malignant nodules compared to normal adjacent thyroid 
tissue. (E) The top enriched GO terms of hypomethylated genes of ge-
nebody region in thyroid malignant nodules compared to normal adja-
cent thyroid tissue. (F) PPI network diagram. (G) The DNA methy-
lation pattern in genomic loci of ACTB, SPN and SHLD1. DMRs, 
differentially methylated regions.
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B-cells of PTC were divided into six subpopulations, such 
as Precursor B-cells, Plasma cells1, Plasma cells2, Plas-
ma cells3, Naive B-cells, and Regulatory B-cells (Figure 
8G and Figure S5D) (marker genes HIST1H4C, IGHM, 
CD27, IGHA1, FCER2, and CD69 respectively). As with 
the SAT in obese people, the expression levels of LEF1, 
TNFRSF13C, SHLD2 and SHLD3 were also highly ex-
pressed in naive and regulatory B-cells (Figure 8H). By 
using Pearson correlation analysis to evaluate the relation 
between the SAT in obese individuals and PTC for naive 
and regulatory B-cells gene expression, we found that the 
SAT in obese individuals and PTC for naive B-cells had a 
Pearson correlation coefficient of 0.92 (Figure 8I), while 
the Pearson correlation coefficient for regulatory B-cells 
was 0.84. (Figure 8J). In summary, the high risk of PTC 
in obesity may be explained by the comparable naive and 
regulatory B-cell transcriptional patterns.

4. Discussion
The results of this research, which were based on the 

work of numerous previous clinical research studies, 
demonstrated a strong correlation between obesity and 
papillary thyroid carcinoma [32]. Therefore, it is crucial 
to identify common therapeutic targets for both, and trans-
criptome and DNA methylation investigations can reveal 
the genes responsible for both illness onset and therapy 
[33], so this work was carried out. 

We downloaded the expression profile data of 16 pa-
tients with PTC as well as people who were healthy and 
obese from GEO. It was found that obese tissues and PTC 
shared a large number of genes, which indicates that there 
is a large amount of commonality in gene expression 
between the two diseases, and when statistical analysis of 
these co-expression pathways was conducted, we found 
that several fat metabolism transport and other pathways 
were jointly under-expressed, while the pathways rela-
ted to immunological inflammation were over-expressed. 
These pathways were shown to co-express significantly. 
Apolipoprotein E (APOE) affects the m6A modification 
in PTC and initiates immunological signaling pathways, 
according to the literature [16]. Then, we conducted a 
follow-up analysis of DEG intersections between obese 
and normal SAT and found that more immune-related pa-
thways were enriched in GO terms, such as T cell differen-
tiation regulation-related pathways. A substantial literature 
also suggests that obesity itself causes immune system 
dysregulation and tends to increase the risk of infection, 
especially tumors [17, 18]. This is in line with the results 
as well, and the KEGG pathway contains comparable 
disease-related pathways. To further improve the reliabi-
lity of the results, WGCNA was performed on the SAT 
and PTC tissue data, and the results revealed four major 
modules that were significantly linked to immunological 
diseases, as well as the formation of a few intracellular 
structures and ribosome assembly translation. This indi-
cates that both diseases may impact translation and may 
potentially be connected to intracellular glycometabolism. 
As a result, we further intersected and checked the genes 
from the three previous analysis methods for extensive 
analysis.

Combining the GSVA genes, co-expressed genes ob-
tained from DEGs analysis, and genes in the WGCNA 
modules, we discovered that these shared genes are pre-
sent in pathways connected to B-cell activation, prolife-
ration, and regulation. This finding suggests that these 
two diseases result in a greater number of immune sys-
tem changes. Analysis based on the TCGA-THCA cohorts 
confirms that B-cell regulatory-related genes affected the 
prognosis of thyroid cancer patients, while the expression 
of LEF1, TNFRSF13C, SHLD2 and SHLD3 might serve 
as the independent factor for predicting the prognosis. 
Although the global DNA methylation levels of PTC are 
still uncertain, abnormal DNA methylation changes affect 
the grade and stage of PTC [34]. In our study, PTC causes 
hypomethylation in promoter region of regulation of T cell 
and leukocyte-related genes, in which ACTB, SPN and 
SHLD1 interact with LEF1, TNFRSF13C, SHLD2 and 
SHLD3. Notably, beta-actin ACTB plays a key role in cy-
toskeleton maintenance and is stable expression in thyroid 
cancer [35]. It has been reported that upregulated expres-
sion of LEF1 could promote the proliferation of PTC [36]. 
TNFRSF13C can serve as a prognostic biomarker for co-

Fig. 8. The Single-cell atlas of the SAT in obesity and PTC. (A) The 
UMAP diagram shows 10 different cell types of the SAT in obesity. 
(B) Violin plots showing the expression levels of LEF1, TNFRSF13C, 
SHLD2 and SHLD3 in each cluster of the SAT in obesity. The Y-axis 
is the log scale normalized read count. (C) The UMAP diagram shows 
4 different cell types of B-cells in the SAT in obesity. (D) Dot plots 
depicting the expression of LEF1, TNFRSF13C, SHLD2 and SHLD3 
in different cell types of B-cells in the SAT in obesity. (E) The UMAP 
diagram shows 11 different cell types of the PTC. (F) Violin plots 
showing the expression levels of LEF1, TNFRSF13C, SHLD2 and 
SHLD3 in each cluster of the PTC. The Y-axis is the log scale norma-
lized read count. (G) The UMAP diagram shows 6 different cell types 
of B-cells in the PTC. (H) Dot plots depicting the expression of LEF1, 
TNFRSF13C, SHLD2 and SHLD3 in different cell types of B-cells 
in the PTC. (I) Linear correlation analysis of naive B-cells from the 
SAT in obesity and PTC.(J) Linear correlation analysis of regulatory 
B-cells from the SAT in obesity and PTC. 
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lon adenocarcinoma [37], it can also serve for thyroid can-
cer in our study. As the shieldin complex, SHLD1, SHLD2 
and SHLD3 control DNA repair pathway choice by coun-
teracting DNA end-resection and participating in immu-
noglobulin class switching [38]. We speculate that these 
genes are involved in the regulation of B-cells in PTC and 
exhibit similar changes in SAT in obesity. To confirm this 
suspicion we downloaded single-cell expression data for 
both diseases. Firstly, in the obese population, we found 
that LEF1, TNFRSF13C, SHLD2 and SHLD3 were highly 
expressed in B-cells, especially in naive and regulatory B. 
Following that, we investigated the single-cell expression 
profiles of PTC patients and related paraneoplastic tissues 
and discovered that LEF1, TNFRSF13C, SHLD2 and 
SHLD3 were similarly highly expressed in B-cells from 
PTC patients. These cells were also mostly identified in 
naive and regulatory B-cells. Both diseases were shown 
to have a strong Pearson correlation coefficient between 
naive and regulatory B-cells. Therefore, the expression 
patterns of naive and regulatory B-cells could explain the 
important relationship between PTC and obesity.

Our study has some limitations when compared to 
other studies; for instance, disease development might be 
regulated by multiple histological levels, and we have only 
preliminary investigated the co-regulatory mechanisms of 
obesity and PTC at the transcriptome and DNA methyla-
tion level. For instance, research on RNA methylation has 
been extensively used to explain how various diseases de-
velop [39]. More research is required on these degrees of 
modifications. In summary, our study highlights potential 
transcriptomic regulatory pathways of obesity and PTC. 
The core genes, molecular mechanisms, and prospective 
therapeutic targets that control obesity and PTC were in-
vestigated through a thorough mapping of the transcrip-
tion pattern. It provides a new viewpoint and supporting 
data to reduce the elevated incidence of papillary PTC in 
people brought on by obesity.
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