ARTICLE INFO

Original paper

Article history:
Received: August 27, 2023
Accepted: December 22, 2023
Published: December 31, 2023

Keywords:
Coronary artery disease, atherosclerosis, quercetin, fibroblast growth factor 2, vascular smooth muscle cells

ABSTRACT

This study aims to investigate the role of quercetin in coronary atherosclerosis and explore its possible mechanisms. Hematoxylin-eosin (H&E), immunohistochemical (IHC), and aniline blue staining were used to analyze the pathological changes in the cross-section of the aorta. Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), Swiss Target Prediction, and PubChem were utilized to predict and screen the bioactive ingredients of traditional Chinese medicine (Huanglian, Yuxingcao, and Jinyinhua) for coronary atherosclerosis. Inflammatory factors and vascular protection parameters were quantitatively detected using ELISA and western blot. The proliferation and migration of vascular smooth muscle cells (VSMC) were evaluated using the Cell Counting Kit-8 (CCK-8), 5-ethyl-2-deoxyuridine (EdU), and wound healing assays. The targets of quercetin were predicted using DisGeNET, Matascape, SWISSMODEL, cellular thermal shift assay (CETSA), and fluorescence titrimetric methods. Based on our findings, quercetin was identified as the active component of Huanglian, Yuxingcao, and Jinyinhua that exerted a positive effect on coronary atherosclerosis. In vivo and in vitro data demonstrated that quercetin improved the pathological changes in model mice and inhibited the proliferation, migration, and inflammatory response of VSMC cells. Specifically, we found that fibroblast growth factor 2 (FGF2) is a direct target of quercetin, and overexpression of FGF2 attenuated the anti-atherosclerosis function of quercetin. Overall, our study confirms the functional role of the quercetin-FGF2 axis in the progression of coronary atherosclerosis, providing a potential target for its treatment.

Introduction

Coronary artery disease (CAD) is a leading cause of death from heart disease, and its incidence is rising due to an increasing population of obesity and diabetes (1, 2). According to statistics, CAD accounts for approximately 40% of all deaths-related causes in developed countries (3). CAD is a complex disease, involving a variety of mechanisms, and cell types, and is affected by a variety of risk factors, which determines that the treatment of CAD is complex and variable (4). Among them, oxidative stress and atherosclerosis are particularly closely related to the mechanism of CAD (5). At present, chemotherapy, percutaneous coronary intervention, coronary artery bypass grafting and other treatment methods are the main treatment strategy for CAD (6). However, due to the inaccuracy and incompleteness of diagnostic strategies caused by the complexity of CAD, it still has a high mortality rate. Therefore, the development of high-characteristic bio-diagnostic markers and more efficient therapeutic drugs is a problem that we urgently need to address, and it has high application value sensitivity and convenience.

Quercetin is a widely distributed, naturally occurring polyhydroxyl flavonoid found in many plant-based foods, such as red onions, apples, broccoli, parsley and berries (7, 8). It has a wide range of pharmacological properties and has been recognized as a potential drug against diabetes, hypertension, cancer and neurodegenerative diseases (9). Additionally, quercetin is also of great concern for its anti-atherosclerosis effects. Jia et al. showed that quercetin treatment significantly reduced atherosclerotic plaque area and lipid accumulation in the aorta (10). Similarly, Cao et al. demonstrated that quercetin treatment improved atherosclerotic pathology and reduced inflammatory response in ApoE−/− mice (11). Although the protective or preventive effects of quercetin on atherosclerosis have been reported, further mechanisms have not been reported yet.

In view of the fact that atherosclerosis is a common cause of CAD, we used high-fat-fed rats to simulate human atherosclerosis, exploring the protective effect of quercetin on coronary atherosclerosis in model rats. Besides, we studied the mechanism of quercetin in inhibiting proliferation, migration and inflammation in VSMC cells, and hope to find a more characteristic bio-diagnostic marker for quercetin in the treatment of coronary atherosclerosis.

Materials and Methods

Animals and experimental design

A total of 60 ApoE−/− mice, weighing 180-250 g were enrolled into the research. Among them, 10 mice were fed with 1.25% high cholesterol to establish the atherosclerosis model, and the same number of mice was injected with physiological saline in equal volume as a control group. When atherosclerosis was measurable, mice were randomly divided into five groups: 1) model group (n=10, fed with 1.25% high cholesterol); 2) 25 mg/kg group (n=10, administrated with 25 mg/kg quercetin); 3) 50 mg/kg group (n=10, administrate with 50 mg/kg quercetin); 4) 100 mg/kg group (n=10, administrate with 100 mg/kg quercetin); 5) 200 mg/kg group (n=10, administrate with 200 mg/kg quercetin).
quercetin); 5) positive control group (n=10, administrate with nitroglycerin). The present study was approved by the Ethics Committee of Changchun University of Chinese Medicine.

Cell culture

Human aortic vascular smooth muscle cells (VSMCs) were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). After all the cells were resuscitated, they were cultured in RPMI-1640 medium containing 10% FBS in a humidified environment and the medium was changed every two days. When the cell growth density reached 80%, they were harvested for further analysis.

Hematoxylin-eosin (H&E) staining

The aortic tissues were fixed with formaldehyde (10%) for 24 h, and then tissues were placed in a 5% nitric acid decalcification solution for 3-5 d. After washing with water, routine dehydration, transparency, paraaffin immersion, embedding and sectioning, the tissue sections were stained with hematoxylin and eosin. Finally, the pathological changes of aortic tissues were observed under microscope.

Immunohistochemical (IHC)

Paraffin-embedded aortic tissue slides were treated with 3% hydrogen peroxide containing methanol, followed by incubation with 10% goat serum to block. After washing, the sections were incubated with primary antibody against CD68 (1:500, Abcam, USA) overnight, and then secondary antibody. Subsequently, the sections were stained with DAB and visualized by microscopy (Olympus, Tokyo, Japan).

Aniline blue staining

First, aortic tissue sections were fixed in 3% buffered glutaraldehyde in 0.2 M phosphate buffer for 30 min at room temperature. Then, the samples were then stained with 5% aqueous aniline blue mixed with 4% acetic acid for 5 min. Finally, the staining was observed under a microscope (Olympus, Tokyo, Japan).

Measurement of interleukin (IL)-6 and IL-8

The concentrations of IL-6 and IL-8 in the model mice and VSMC cells were assessed using a commercially available ELISA kit (USCN Business Co., Ltd, China).

Western blot

Aortic tissues were lysed by RIPA Lysis Buffer (Solarbio, Beijing, China) and protein concentration was measured by BCA protein assay kit (Solarbio, Beijing, China). The prepared protein was separated by polyacrylamide-SDS gels and then transferred onto PVDF membranes (Roche, Switzerland). Blocked with 5% skimmed milk for 2.5 h, the PVDF membrane was subjected to incubation with primary antibodies against VEGF, Hsp70 and β-actin (1:1000, Proteintech Group Inc., Wuhan, China) at 4°C overnight. On the following day, protein samples were incubated with the secondary antibody at 37°C for 45 min. The protein blots were visualized using enhanced chemiluminescence (ECL) with exposure to X-ray films (Hyperfilm, GE Healthcare, UK, USA). β-actin was used as internal control, and the gray value ratio of the protein band to β-actin was deemed as relative protein expression.

Cell Counting Kit-8 (CCK-8)

In short, VSMC cells adjusted to the appropriate concentration (5×10^4 cells) were inoculated on 96-well plates and treated accordingly. Then, each well was added with CCK-8 solution and incubated for 2 h in the dark. Finally, the optical density at 450 nm was measured.

5-ethynyl-2-deoxyuridine (EdU) assay

Briefly, VSMC cells were inoculated in 96-well plates for 48 h. Washed with PBS (Beyotime, Beijing, China), they were incubated with 10 µM EdU (Beyotime, Beijing, China) for 2 h at 37°C. EdU-positive cells were detected by Apollo staining and DAPI staining, and the percentage of positive cells was defined as proliferation rate.

Wound healing assay

First, VSMC cells were inoculated in a 6-well plate for 24 h. When the cells were fully fused, the pipette tip was applied to create a scratch wound on the confluent cells in the center. The migration and cell movement of the entire wound area was observed with an inverted optical microscope (Oberkochen, Germany), and the images were taken at 48 h with a camera connected to the microscope (Sony-Cyber shot, Shanghai Suoguang Visual Products Co., Ltd., China). The cell migration ability was statistically analyzed according to the cell healing.

Bioinformatics

The Traditional Chinese Medicine Systems Pharmacology Database (TCMSP, http://ibts.hkbu.edu.hk/LSP/tcsp.php) was used to screen the common active ingredients of Huanglian, Yuxingcao and Jinjinyhua. Swiss Target Prediction (http://www.swisstargetprediction.ch/) was used to predict the common targets of quercetin and coronary atherosclerosis. DisGeNET (https://www.disgenet.org/) and Metascape (https://metascape.org/) were used to further screen targets of quercetin acting on coronary atherosclerosis. PubChem (https://pubchem.ncbi.nlm.nih.gov/) was used to analyze the chemistry of quercetin including molecular formula, and 2D and 3D structural information. SWISSMODEL (https://swissmodel.expasy.org/) and Autodock (http://www.scripps.edu/mb/olson/doc/Autodock) were used for 3D models construction and docking study of FGF2, respectively.

Cellular thermal shift assay (CETSA)

VSMC cells treated with quercetin or DMSO at 37°C for 24 h were collected, and the cell suspension was distributed into 0.2 ml PCR tubes, with 200 µl cell suspension in each tube. The PCR tubes were heated at the designated temperature (40, 60, 64, 67, 70, 72 and 75°C) for 3 min. They were then removed and incubated at 4°C immediately following heating. Cells were then lysed using cell lysis buffer for western (Beyotime Institute of Biotechnology) and analyzed by western blotting as described in the western blotting methods above.

Fluorescence titrimetric

Both purified F2G2 protein and quercetin samples were dissolved in PBS. The aliquots of quercetin were gradually added to two mL of F2G2 solution, and the fluorescence spectra were recorded. The resulting titration data were fitted with the Hill plot equation $y = V_{max} \times x^n / (kn + x^n)$, and the dissociation constant (Kd) was calculated by
were both evidently decreased (Fig. 3A and 3B). Of note, with the increase of quercetin concentration, its inhibitory effect on the above factors is also enhanced. Further, aortic cross-section histological analysis with IHC and aniline blue showed that quercetin treatment significantly reduced inflammatory cell and collagen content in a concentration-dependent manner as compared to model mice (Fig. 3C and 3D).

Results

Construction of mice model of coronary atherosclerosis

As shown in Fig. 1A, H&E staining showed an increased necrotic area of cross-sectional aortic in the high-fat-fed mice compared to the normal-fed mice. Consistently, monocyte/macrophage content assessed by anti-CD68 IHC revealed that high-fat-fed significantly increased CD68+ cells (macrophages) in aortic lesions (Fig. 1B), indicating that the atherosclerosis model was successfully constructed.

Quercetin is effective in the treatment of coronary atherosclerosis in vivo

From the TCMSP database, two common ingredients of Huanglian, Yuxingcao and Jinyinhua were obtained (Fig. 2A). According to the requirement of easy absorption of the drug, quercetin was selected. Next, we obtained a total of 37 common targets of quercetin and CAD through Swiss Target Prediction, suggesting that quercetin may act on coronary atherosclerosis (Fig. 2B). The molecular structure of quercetin was shown in Fig. 2C. To further study the role of quercetin on coronary atherosclerosis, we detected the changes in the expression of inflammatory factors and vascular protective factors under the intervention of quercetin. As expected, compared to the model group, quercetin intervention significantly reduced the levels of inflammatory factors IL-6 and IL-8, and vascular protection parameters such as VEGF and HSP70 were both evidently decreased (Fig. 3A and 3B). Of note, with the increase of quercetin concentration, its inhibitory effect on the above factors is also enhanced. Further, aortic cross-section histological analysis with IHC and aniline blue showed that quercetin treatment significantly reduced inflammatory cell and collagen content in a concentration-dependent manner as compared to model mice (Fig. 3C and 3D).

Quercetin inhibits VSMC proliferation, migration, and secretion of inflammatory cytokines in a dose-dependent and time-dependent manner in vitro

Quercetin showed inhibition effects on the progression of coronary atherosclerosis in model mice. To further explore the biological function of quercetin, we conducted in vitro studies using VSMC cells. In proliferation experiment, we found that quercetin significantly inhibited the proliferation activity of VSMC, especially at the concentration of 50 μM (Fig. 4A). In the migration experiment, the relative migration width of the 50 μM group was also decreased.
evidently larger than that of the other three groups (model, 2 μM and 10 μM) (Fig. 4B). Similarly, the levels of inflammatory cytokines IL-6 and IL-8 were remarkably reduced after quercetin treatment, especially in the 50 μM group (Fig. 4C). The above-mentioned data confirmed that quercetin inhibited VSMC proliferation, migration and secretion of inflammatory cytokines in a dose-dependent manner. Considering that the inhibitory effect of 50 μM quercetin is more obvious, we chose 50 μM as a fixed dose to explore the influence of time factor on the treatment of coronary atherosclerosis. In the beginning, the weakened fluorescence activity was found in EdU staining with the increase of quercetin treatment time (Fig. 5A). Next, the wound healing data depicted that 50 μM quercetin reduced the cell migration rate in a time-dependent manner (Fig. 5B). Meanwhile, compared with other time periods (12 h and 24 h), the content of inflammatory factors IL-6 and IL-8 in VSMC cells was the lowest after 36 h of quercetin treatment (Fig. 5C).

FGF2 is the target of quercetin on coronary atherosclerosis

To clarify the regulatory mechanism of quercetin on coronary atherosclerosis, we performed further bioinformatics analysis on the above-screened 37 targets. We screened targets related to coronary atherosclerosis through DisGeNET enrichment analysis and found these targets are mainly related to hyperlipidemia, dyslipidemias, endothelial dysfunction, vascular diseases and atherosclerosis of the aorta (Fig. 6A). After that, Metascape was applied to select the target gene related to epithelial cell proliferation and apoptosis. As presented in Fig. 6B, these genes were primarily associated with cholesterol metabolism and regulation of plasma lipoprotein particles. Of the 37 genes, we focused on FGF2, as it is related to both coronary atherosclerosis and epithelial cell proliferation and apoptosis, and has a higher expression. Its 3D structure and possible binding patterns with quercetin are shown in Fig. 6C. To further verify whether FGF2 is the direct target of quercetin acting on coronary atherosclerosis, CETSA and fluorescence titrimetrics were conducted. CETSA data confirmed that quercetin could bind to FGF2 and promote the degradation of FGF2 protein (Fig. 6D).

FGF2 overexpression reverses the inhibitory effect of quercetin on coronary atherosclerosis

To further explore the relationship between quercetin and FGF2 in the progression of coronary atherosclerosis, we performed rescue experiments. As exhibited in Fig. 7A, compared with quercetin + pc-NC group, transfected
with quercetin + pc-FGF2 partially offset the toxic effect of quercetin on VSMC cells. Consistently, EdU results showed that the number of cell clones in group quercetin + pc-FGF2 also increased relatively as a comparison to quercetin + pc-NC group (Fig. 7B). In the verification of migration experiments, the wound healing results showed that the migration rate of VSMC cells transfected with quercetin + pc-FGF2 was significantly higher than that of cells transfected with quercetin + pc-NC (Fig. 7C). Furthermore, ELISA data depicted that overexpression FGF2 weakened the inhibition of quercetin on inflammatory response, manifested by an increase in inflammatory cytokines IL-6 and IL-8 (Fig. 7D).

Discussion

The naturally occurring pathological characteristics and typical pathogenesis of ApoE−/−mice are similar to the incidence of atherosclerosis in human natural conditions and are considered to be an ideal model for the study of the pathogenesis and drug intervention of atherosclerosis (12). Therefore, in this study, we used ApoE−/−mice fed a high-fat diet as an in vivo atherosclerosis model. Pathological manifestations of animal aorta showed obvious atherosclerosis plaque formation, lipid deposition, vascular wall thickening and hardening, reduced elasticity, and increased necrotic area (13). Similarly, in the current research, we observed pathological changes and an increase in the cross-sectional necrotic area of the aorta in model mice. Atherosclerosis is a complex chronic inflammatory disease involving the interaction of many inflammatory cells and cytokines, such as the up-regulation of adhesion molecules leading to the recruitment of immune cell vascular walls (14). In atherosclerosis lesions, the most abundant immune cell type is the macrophage, which is involved in all pathological stages of atherosclerosis by secreting chemokines (15, 16). Consistently, IHC data revealed a significant increase of CD68+ cells (macrophage) in the aortic lesions of mice fed with high fat, indicating that our in vivo simulation of atherosclerosis modeling was successful.

Many studies suggested that inflammation plays an important role in all stages of atherosclerosis development and progression (17). IL-6 is an important cytokine, that promotes the early inflammatory response of atherosclerosis, and activates the differentiation and infiltration of macrophages (12). IL-8 promotes the adhesion of monocytes to arterial endothelial cells in the early stage of lesion formation and promotes angiogenesis in the later stage of plaque formation to aggravate atherosclerosis (18). Our ELISA results showed that the model mice had higher expressions of IL-6 and IL-8. Conversely, the above two inflammatory factors in the quercetin group were significantly reduced. This conclusion is consistent with Cao et al. (11). Meanwhile, we observed that quercetin inhibited the expression of inflammatory cells, again confirming the anti-inflammatory effect of quercetin. Vascular endothelial growth factor (VEGF) is a very effective pro-angiogenesis factor and it can induce the development and progression of certain pathological conditions, increase vascular permeability and recruit inflammatory cells to injury sites (19). As a member of the HSP family, HSP70 is involved in the immune response during the formation of atherosclerosis plaques, which activates inflammatory cells and reduces the stability of atherosclerosis plaques (20). Consistent with the reports, both VEGF and HSP70 were highly expressed in the model group. Terao et al. revealed that quercetin regulates blood pressure and maintains cardiovascular function by changing vascular compliance, anti-inflammatory and antioxidant effects (21). Interestingly, our data also showed that quercetin decreased the expression of vascular protective parameters VEGF and HSP70. Collagen, which forms the main component of atherosclerosis plaques, can block blood vessels and promote lipid deposition (22). Correspondingly, we observed that high-fat feeding led to higher collagen content in the aorta of model mice. Of note, quercetin improved coronary atherosclerosis by reducing aortic lesions and collagen levels, which is consistent with Li et al (23).

Accumulated evidence clearly confirms that normal quiescent VSMC proliferates intensively and migrates to the inner subcutaneous intima in the progress of atherosclerosis. More than that, the proliferation and migration of VSMC to the intima are important components of atherosclerosis (24, 25). Therefore, limiting the proliferation and migration of VSMC contributes to inhibiting the progression of atherosclerosis. The dietary flavonoid quercetin is thought to promote health, in part due to its anti-inflammatory and antioxidant properties (26). Consistent with previous studies (27, 28), quercetin, especially with a concentration of 50 μM and a treatment time of 48h, showed similar effects in inhibiting VSMC proliferation, migration and inflammation response. Taken together, quercetin plays an anti-atherosclerosis role by inhibiting the proliferation, migration and inflammatory response of VSMC.

Fibroblast growth factor 2 (FGF-2) is an effective growth factor that stimulates the migration and proliferation of endothelial cells and promotes mitosis of VSMC (29). FGF2 is involved in the regulation of a variety of cellular functions in a variety of cell types, including cell proliferation, differentiation, viability, adhesion, and migration (30, 31). According to reports, FGF2 and its receptors have a dual role in the cardiovascular system. In the walls of normal blood vessels, the high expression of FGF2 is conducive to vascular homeostasis, vascular protection and endothelial survival. In atherosclerosis lesions, FGF2 and its receptors contribute to the inflammatory process, intimal thickening and angiogenesis in the plaque (32).

In this study, we demonstrated the anti-atherosclerosis effect of quercetin both in vivo and in vitro. Mechanically,
we confirmed that FGF2 was the target of quercetin, and overexpression of FGF2 attenuates the anti-atherosclerosi

Declarations

Conflicts of interest
The authors state that there are no conflicts of interest.

Ethics approval and consent to participate
The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Animal Ethics Committee of Changchun University of Chinese Medicine.

Consent for publication
The authors give consent to the publication in the journal.

Availability of data and material
All data generated or analysed during this study are included in this published article.

Funding
This project was supported by the science and technology research project of the Jilin Provincial Department of Education (JJKH20210985KJ) and Project supported by the science and technology development plan of Jilin Province (20190303166SF).

Authors' contributions
Rui Shi and Yue Deng conceived and designed the study. Rui Shi, Zhaozheng Liu and Jinzhu Yin conducted most of the experiments. Rui Shi analyzed the data. Jinzhu Yin performed the literature search and data extraction. Rui Shi drafted the manuscript. Rui Shi and Yue Deng finalized the manuscript. All authors read and approved the final manuscript.

Acknowledgments
We deeply appreciate the supports of all participants. A preprint has previously been published (33). The authors declare that the work described was original research that has not been published previously.

References

