Next-generation sequencing and immunohistochemistry approaches for microsatellite instability detection in endometrial cancer

Azhin Saber Ali1,2, Lana Sardar Alalem2*

1 Department of Medical Laboratory Technology, Shaqlawa Technical College, Erbil Polytechnic University, Erbil, Iraq
2 Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq

ARTICLE INFO

Original paper

Article history:
Received: September 04, 2023
Accepted: November 30, 2023
Published: December 20, 2023

Keywords:
Endometrioid carcinoma, NGS, IHC, mismatch repair system, Microsatellite instability

ABSTRACT

The purpose was to determine the effectiveness of immunohistochemical observation, a quick and easy method for determining Microsatellite instability MSI and/or other types of endometrial cancer (EC) based on modern classification. As molecular study takes more cost we want to compare both methods and show the possibility of doing IHC instead of molecular study. This study was designed to establish a small gene panel of Next Generation Sequencing (NGS) of endometrial cancer patients targeting 4 mismatch repair genes; MSH6, MSH2, MLH1 and PMS2. Using the DNBSEQ-G400 Platform, the Human Core Exome kit and Python software for analysis were used. At the same time, the Dako kit was used to perform IHC for six primary antibodies used to detect each of MSH6, MSH2, MLH and PMS2. The primary antibodies were applied on 5 µm formalin-fixed paraffin-embedded (FFPE). Results showed that histopathological examinations of all patients were at stage I endometrioid endometrial carcinoma. The FIGO classifications were Ia and Ib. Microsatellite instability (MIS) was observed through the IHC study. The molecular studies detected several polymorphisms that have clinical significance and some of them have conflicting interpretations. In conclusion, we considered that a simple immunoreaction staining procedure can be used as an alternative method for MSI phenotype detection rather than any type of more expensive and complex method of NGS.

INTRODUCTION

Globally, in 2018 endometrial cancer (EC) was regarded as the sixth most commonly diagnosed cancer and the fourteenth leading cause of cancer with most deaths in females (1). The annual incidence is estimated at 10.8 per 100,000 women in the world. The incidence of this cancer is four times higher in the industrialized countries of Europe and America North compared to Asia (including Japan), Africa and South America (1). There is no precise data for endometrial cancer in Iraq, however, some evidence shows elevating uterine cancer in general including endometrial cancer in some cities (2).

More than 30 years ago, based on hormonal and clinical characteristics Bookhman classified EC into two types, type I EC and type II EC (3). Type I EC are estrogen-dependent, mainly low-grade, hormone-receptor-positive adenocarcinomas with endometrioid morphology and are often referred to as endometrioid endometrial cancers and account for approximately 85% of all EC usually diagnosed at an early stage and characterized by a good prognosis. Type II EC is characterized by non-endometrioid subtypes such as serous, clear-cell and undifferentiated carcinomas. They generally are high-grade, hormone-receptor negative, and have poor prognosis (3). The International Federation of Gynecology and Obstetrics (FIGO) adopted a-surgical pathologic staging in 1988 and in 2009, FIGO updated the staging system and classified patients into prognostic groups based on the extent of disease (4, 5).

The new classification is based on molecular features, according to The Cancer Genome Atlas (TCGA), which established a new molecular classification of EC by identifying 4 distinct classes of tumor listed from best to worst prognosis (6). Efforts have been made to classify ECs into these 4 molecular subgroups using techniques available in routine (7-9), which include, the POLE (DNA polymerase ε) ultramutated group, the hypermutated/microsatellite unstable (10) group, the copy number low/microsatellite stable group and the copy number high (serous-like) group.

The objectives of this study were to determine the effectiveness of immunohistochemical observation, a quick and easy method for determining MSI and/or other types of EC based on modern classification. As molecular study takes more cost we want to compare both methods and show the possibility of performing IHC instead of molecular study.

MATERIALS AND METHODS

The Study design

This study included two techniques at the same time for comparison, NGS as molecular study and IHC as histopathological study for EC. The designed study is shown in Figure 1.

Sample collection

Samples were collected at Erbil Maternal Hospital...
Immunohistochemical interpretations

The four slides from each tumor block staining for MLH1, MSH2, MSH6 and PMS2 were assessed. The semiquantitative scoring system was used to minimize interobserver variation (11-13). A valid result required the existence of internal control immunopositivity, the scoring was as follows; no tumor cell immunopositivity equal to 0 score, 1-10% positive tumor cells equals score 1, 11-50% positive tumor cells equals score 2, 51-80% positive tumor cells equals to score 3 and more than 80% is score 4 (12, 13). For making one number for the semiquantitative scores the intensity and percentage of immunopositivity for each antibody were multiplied to produce a number between 0 to 12 (11).

Results

Whole exome sequencing WES results

The observed polymorphism in Table 1 was analyzed as clinical significance, from the current variations most of them were found in dbSNP but not found as a clinical significance for EC in the Clin Var database. About 9 of them were not found even in dbSNP, such as MSH2 (2:47641560AAAA->-) for the second patient (EC1), see the remaining 8 variations in Table 1, these are named novel variations.

Within these polymorphisms, some of them were located in intron regions and others were located within exon regions. The former included deletions, insertions and deletion/insertion, while the latter has many types of mutations which means functional consequences including synonymous single nucleotide variation (SNV), and non-synonymous SNV. Within all non-synonymous SNV, they were missense variants (MSH2 for EC2, MLH1 and PMS2 for EC3 and MSH2 for EC4).

Table 2 shows the variations which have conflicting interpretations. Conflicting interpretations are defined as genetic results from multiplex panel testing utilized in clinical practice are frequently interpreted differently, which may have an impact on how a patient is managed (14, 15). Some variations in MSH2 for EC1, EC2 and EC4 and MSH6 for EC2 were found in the Clin Var database as conflicting interpretations. Three of them were found in the dbSNP database but no data was recorded for EC as clinically significant. One of them (MSH2) was novel (2:47641560AAAA->-) as not found in the dbSNP, such as MSH2 (2:47641560AAAA->-) for the second patient (EC1), see the remaining 8 variations in Table 1, these are named novel variations.

Routine histopathological examination

The architecture of the endometrial layer of patients with endometrial carcinoma was characterized by the tubular, cribriform (a malignant epithelial growth that takes the shape of massive nests pierced by numerous, very spherical gaps of various sizes).

The tumor cells are columnar, stratified and showed different cytonuclear atypia. Our results are also revealed by Tavassoli and Devilee, 2003(16), Figure 2. Cytonuclear atypia which is a precursor for endometrioid carcinoma characterized by loss of polarity, rounded nuclei, anisokaryosis, hyper or hypochromasia and a more eosinophilic cytoplasm (9, 17).

Table 3 shows the FIGO classifications for all patients separately. Each of EC1 and EC2 were in Ib FIGO stage, pT1a, pN0 in TNM staging. pT1a means only affects the
endometrium or only penetrates around half of the myo-
metrium. pN0 means Only a small several of cancer cells
less than 0.2 mm in diameter (which are isolated tumor
cells) or none at all in any adjacent nodes are seen, as also
shown by (18). While each of EC3, EC4 and EC6 are of
the same FIGO staging which are T1b, Nx, Mx, Ib. T1b
signifies that the cancer is between 1-2 cm in size. Both Nx and Mx mean nothing has been identified for nearby lymph nodes and unable for mearing metastasis, respectively. Finally, EC5 was at T1a, Nx, Mx means this patient had endometrioid carcinoma which only affects the endometrium or only penetrates around half of the myometrium (T1a), in addition to no information about adjacent lymph nodes and metastasis, Nx and Mx respectively.

Immunoreactions observation and interpretations

The reactions for four MMR antibodies are shown in Figure 3. These biomarkers had different levels of reaction intensities and had different regional reactions. For all patients, the nuclear staining for both MSH6 and MSH2 was observed in tumor regions while nuclear staining reactions of both MLH1 and PMS2 occurred in the non-tumor regions. The nuclear staining was observed for all MMR proteins. IHC study for these genes PMS2 and MLH1 expressed in the non-tumor region while MSH6 and MSH2 expressed in the tumor region.

The staining intensity score and percentage positivity

![Figure 2](image1.png)

Figure 2. Endometrioid endometrial carcinoma, tumor region showing tubular differentiation of gland (black arrow) and cells are columnar, stratified and showed different cytonuclear atypia (CA) (green arrow).

![Figure 3](image2.png)

Figure 3. Nuclear immunoreaction of MMR proteins in EC patients. A: MSH6 and B: MSH2 antibodies are detected in tumor regions while C: MLH1 and D: PMS2 antibodies are detected in non-tumor regions. 100X.

<table>
<thead>
<tr>
<th>Patients</th>
<th>Gene</th>
<th>Variant coordinate</th>
<th>AA change</th>
<th>Zygosity</th>
<th>Mutation type</th>
<th>CLNSIG</th>
<th>External database\clinical significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1</td>
<td>MSH2</td>
<td>NM_000251.3</td>
<td>c.942+24_942+29del</td>
<td>het</td>
<td>intron</td>
<td>Conflicting</td>
<td>dbSNP/ not reported in Clin Var for EC</td>
</tr>
<tr>
<td>MSH6</td>
<td></td>
<td>NC_000002.11:g.48026172C>T</td>
<td>p.A>A</td>
<td>het</td>
<td>synonymous SNV</td>
<td>Conflicting</td>
<td>dbSNP/ not reported in Clin Var for EC</td>
</tr>
<tr>
<td>EC2</td>
<td>MSH2</td>
<td>NC_000002.11:g.47702191A>G</td>
<td>p.N>S</td>
<td>het</td>
<td>nonsynonymous SNV</td>
<td>Conflicting</td>
<td>dbSNP/ not reported in Clin Var for EC</td>
</tr>
<tr>
<td>EC4</td>
<td>MSH2</td>
<td>2:47641560AAAA>->-</td>
<td>Intron</td>
<td>het</td>
<td>DEL</td>
<td>Conflicting</td>
<td>Novel</td>
</tr>
</tbody>
</table>

Table 2. Nucleotide polymorphism with conflicting interpretation clinical significance.

<table>
<thead>
<tr>
<th>Patients</th>
<th>Age</th>
<th>Grade</th>
<th>FIGO staging</th>
<th>Myometrium invasion</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1</td>
<td>51</td>
<td>2</td>
<td>T pT1a</td>
<td>half</td>
</tr>
<tr>
<td>EC2</td>
<td>56</td>
<td>2</td>
<td>N pN0</td>
<td>half</td>
</tr>
<tr>
<td>EC3</td>
<td>70</td>
<td>2</td>
<td>M Mx</td>
<td>half</td>
</tr>
<tr>
<td>EC4</td>
<td>68</td>
<td>2</td>
<td>stage la</td>
<td>half</td>
</tr>
<tr>
<td>EC5</td>
<td>56</td>
<td>2</td>
<td>N Mx</td>
<td>half</td>
</tr>
<tr>
<td>EC6</td>
<td>55</td>
<td>2</td>
<td>stage lb</td>
<td>half</td>
</tr>
</tbody>
</table>

Table 3. Clinical and pathologic data of patients.
score are shown in Table 4. The scoring system for 6 antibodies was at a different level for each sample. There was no MLH1 antibody reaction for the EC5 and no PMS2 antibody reaction for the EC1 even after repetition of the procedure. The highest score was MSH6 antibodies for EC6.

Discussion

The result of histopathological examinations of all patients revealed that the cancer type may belong to type I EC according to Bokhman, 1983 which is estrogen-dependent (3). Besides the modern classification for our samples was the endometrioid subtype according to WHO classification 2020 (19).

WES is an alternative to whole genome sequencing (WGS) because the exome makes up only 2% of the human genome yet contains 85% of known disease-related mutations (20, 21). WES provides many advantages over WGS, including lower cost, quicker data analysis, and simpler data management (22). Considering the results of WES for 4 patients we found many variations and showed them in two tables separately, table 1 including the polymorphisms which are interpreted as clinically significant, and Table 2; variations that have different interpretations known to be conflicting.

Microsatellites are DNA elements composed of short repetitive motifs that are prone to misalignment and frameshift mutations during cell division. In healthy cells, the ensuing small indels or single-base mispairs are corrected by heterodimer enzyme complexes of the DNA mismatch repair (MMR) system encoded by the key MMR genes MLH1, MSH2, PMS2 and MSH6 (23, 24). DNA mismatch repair deficiency (dMMR) results in the progressive accumulation of genetic mutations with each cell replication, potentially dysregulating many oncogenes or tumor suppressor genes. The molecular hallmark of dMMR is MSI (microsatellite instability), with expansions or contractions in the number of tandem repeats in the ensuing small indels or single-base mispairs are corrected by heterodimer enzyme complexes of the DNA mismatch repair (MMR) system encoded by the key MMR genes MLH1, MSH2, PMS2 and MSH6 (23, 24). DNA mismatch repair deficiency (dMMR) results in the progressive accumulation of genetic mutations with each cell replication, potentially dysregulating many oncogenes or tumor suppressor genes. The molecular hallmark of dMMR is MSI (microsatellite instability), with expansions or contractions in the number of tandem repeats throughout the genome. This phenomenon is observed in a considerable proportion of colorectal, endometrial, gastric, pancreatic, brain, biliary tract, urinary tract and ovarian tumors (23-25). An MSI or dMMR was defined as the lack of at least one MMR protein (12).

The heterodimer arrangements are presented for MMR proteins as the four proteins are located in a sequence of two together as follows; MLH1 with PMS2 and MSH2 with MSH6 (26). These results were also detected in our IHC study for these genes as PMS2 and MLH1 are expressed in the non-tumor region while MSH6 and MSH2 are expressed in the tumor region. Relay on their functional structure, it is feasible to carry out an immunohistochemical panel of PMS2 and MSH6 antibodies as early screening for MMR deficiency (26). Based on some previous studies for immunohistochemical evaluation we consider the presence or absence of nuclear staining, assuming that a positive reaction of tumor cells is considered intact protein expression (MSS phenotype) and that lack of expression, with positive internal control, is regarded as MSI phenotype (27-30).

Conclusions

Regarding our evaluation system in dMMR proteins determination through the IHC study, which has already been utilized to determine the MSI phenotype, we considered that a simple immunoreaction staining procedure can be used as an alternative method for MSI phenotype detection rather than any type of more expensive and complex method of NGS.

Disclosure

Both authors made contributions to the planning and design of the study. Azhin Saber Ali and Lana Sardar Alalem prepared the material and collected and analyzed the data. Azhin Saber Ali wrote the first draft of the manuscript, and both authors provided feedback on earlier drafts. The final manuscript was read and approved by both writers.

Ethical approval was obtained from the Salahaddin University College of Science no: 4S/505.

Acknowledgements and Funding: There has been no specific funding awarded for this research.

References

