Inhibiting MiR-320a promotes myocardial apoptosis in myocardial infarction rats through activating VEGF pathway

Yong Liu*, Ting Wang*, Hongmei Lai, Jingyi Shen, Fangming Gao*

Heart and Panvascular Diagnosis and Treatment Center, 91 Tianchi Road, Tianshan District, Urumqi, Xinjiang, China

* Yong Liu and Ting Wang contributed equally to this work.

ARTICLE INFO

Original paper

Article history:
Received: June 08, 2023
Accepted: September 07, 2023
Published: November 30, 2023

Keywords:
Myocardial infarction, miR-320a, vascular endothelial growth factor, apoptosis

ABSTRACT

To detect the expressions of vascular endothelial growth factor (VEGF) and micro ribonucleic acid (miR)-320a in myocardial cells of rats with myocardial infarction (MI), and to study the detailed mechanism of the role of miR-320a in myocardial apoptosis in MI rats. The Sprague-Dawley rat model of MI was established, and the rats were randomly divided into a control group (n=8), recombinant adeno-associated virus (rAAV)-miR-320a group (n=8) and rAAV-miR-320a TuDs group (n=8). The corresponding rAAV (1×10^11 virion-like particles) was intravenously injected. At 2 weeks after the injection of rAAV, all rats were euthanatized, and the organs were collected, frozen in liquid nitrogen and stored at -80°C for further experiments. The total RNA and total protein were extracted from heart tissues, and the expression levels of rAAV-miR-320a and rAAV-miR-320a TuDs in heart tissues were determined via reverse transcription-polymerase chain reaction (RT-PCR). Moreover, RT-PCR and Western blotting were performed to detect the mRNA and protein expressions in heart tissues, respectively. At the same time, myocardial apoptosis was evaluated through flow cytometry. After treatment with miR-320a TuDs, the mRNA and protein expressions of VEGF in heart tissues in MI were significantly increased (P<0.05). The results of flow cytometry showed that miR-320a TuDs intervention could promote myocardial apoptosis in MI (P<0.05). In addition, the results of Western blotting revealed that miR-320a TuDs could facilitate the activation of the VEGF signaling pathway in heart tissues in MI (P<0.05). Inhibiting miR-320a can promote myocardial apoptosis through activating the VEGF signaling pathway in myocardial cells in MI.

Introduction

Coronary artery disease, also known as ischemic heart disease (IHD), has been the major cause of death and disability around the world in the past 15 years (1-3). Myocardial infarction (MI) refers to the acute coronary occlusion caused by coronary atherosclerosis, plaque rupture and thrombosis. Persistent myocardial ischemia can eventually result in irreversible myocardial injury, and regeneration is difficult for damaged myocardial cells. As a result, the myocardium supplied by the occluded coronary artery becomes disabled and even endangers life (4,5). Therefore, restoring blood supply is critical for the successful treatment of IHD. It is reported that a large number of proteins protect the host from myocardial ischemia and reperfusion injury through regulating myocardial apoptosis and inflammation. Studies have shown that early myocardial apoptosis may increase the incidence of MI (4-6).

Vascular endothelial growth factor (VEGF) is considered the most important cytokine promoting endothelial cell growth, which plays a vital role in maintaining the stability of the vascular endothelial structure, facilitating endothelial cell proliferation and regeneration, and inhibiting apoptosis. According to previous studies, VEGF may help the survival and proliferation of endothelial cells and protect cells from apoptosis through inducing the expressions of anti-apoptosis and antioxidant proteins (7-10). VEGF can directly induce the phosphorylation of VEGF receptor 2, thereby activating the downstream signaling molecules in the apoptotic pathway, whose mechanism is that Apatinib reduces the VEGF-mediated PI3K/Akt signal transduction and increases apoptosis in a dose-dependent manner.

Micro ribonucleic acids (miRNAs) are a kind of small non-coding RNAs that regulate the gene expression at the post-transcriptional level through binding to their target messenger RNAs (mRNAs) (11-13). There is increasingly more evidence that miRNAs play key roles in a variety of physiological/pathological processes. It is speculated that a single miRNA can regulate many processes through multiple targets. Some miRNAs have tissue-enriched or even tissue-restricted features, which can control the gene expression in some organs or tissues (14-17). More importantly, miRNAs may become promising therapeutic targets for diseases. In the present study, the effect of miR-320a on myocardial apoptosis after MI and the expression of VEGF were explored, so as to clarify the mechanism of action of miR-320a in myocardial apoptosis in rats.
Materials and Methods

Laboratory animals

Male Wistar rats weighing 225-250 g were purchased from the Laboratory Animal Center of South China University of Technology, and they were fed with drinking water and rodent feed in separate cages under the natural light and controlled humidity/temperature. This study was approved by the Animal Ethics Committee of Heart and Panvascular Diagnosis and Treatment Center Animal Center.

Laboratory reagents

Rabbit anti-VEGF, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) polyclonal antibodies were obtained from ABclonal Biotech (Cambridge, MA, USA), the polyvinylidene fluoride (PVDF) membranes from Bio-Rad (Hercules, CA, USA), horseradish peroxidase (HRP)-conjugated secondary antibodies and enhanced chemiluminescence reagents from Pierce Biotech (Rockford, IL, USA), the miR-320a mimics/inhibitors, negative control and miRNA primers from Ribobio (Guangzhou, China), the endotoxin-free plasmid purification kit from Tiangen (Beijing, China), the mRNA primers from BGI Tech (Shenzhen, China), and the DNA ladder and pre-stained protein markers from Thermo Fisher Scientific (Waltham, MA, USA).

Experimental methods
Construction of plasmids and preparation of recombinant adeno-associated virus (rAAV)
To control the expression of miR-320a in vivo, the type 9 rAAV system was used. The oligonucleotide and its complementary sequences were synthesized by BGI Tech (Shenzhen, China), annealed and ligated to the rAAV vectors. The miR-320a(5'-AGCTTTTCGGCCCTCTCAAACCCAGCTTTTTCTAA-GAGAAAAAGCTGGTGAGAGGGCGACCGC-3') and miR-320a TuDs(5'-GACGGCGCTAGGATCATGAGAAAAAGCTGGGTTGAGAGGGCGACCGC-3') designed were packaged with the rAAV, followed by purification as previously described.

Grouping and modeling
The rats were anesthetized with an intraperitoneal injection of Zoletil (30 mg/kg) and connected to a ventilator for surgery. Briefly, the skin was depilated and carefully cut open to expose the heart. Then the anterior descending coronary artery was ligated using the 3-0 silk thread at 3 mm away from the left auricle. The heart was placed in the thoracic cavity for 3-4 min, and the wound was closed using the suture line layer by layer. The rats were supported by the ventilator until the spontaneous respiratory function was restored. The skin around the suture line was wiped with 70% ethanol, and the rats were placed in clean separate cages for resuscitation. During the first 4 d, acetaminophen (50 mg/kg) was administrated to limit the postoperative pain, and the wound care needed was given to avoid infection. The rats were randomly divided into a control group (n=8), rAAV-miR-320a group (n=8) and rAAV-miR-320a TuDs group (n=8). The corresponding rAAV (1×10^{11} virion-like particles) was intravenously injected. At 2 weeks after the injection of rAAV, all rats were euthanatized, and the organs were collected, frozen in liquid nitrogen and stored at -80°C for further experiments or fixed with formalin for histological analysis.

Echocardiography

The cardiac function and structure were evaluated using the high-frequency ultrasound system (Vevo2100). Briefly, the rats were anesthetized with 5% isoflurane using the breathing apparatus, and the left chest was carefully scanned for two-dimensional echocardiographic measurement, including left ventricular internal diameter at end-diastole (LVIDd), left ventricular internal diameter at end-systole (LVIDs), left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS).

Detection of apoptosis via flow cytometry
A tissue block (3 mm³) was taken from the frozen sample of the left ventricle, and 3 mL of digestion buffer was added and mixed evenly in a water bath at 36°C for 80 min. After the supernatant was discarded, 2 mL of digestion buffer was added for digestion for another 30 min, followed by natural sedimentation. Then the cell suspension was collected, and the precipitated tissue block was restored for 1 h. 50 g of liquid digested twice was taken and centrifuged for 2 min, the supernatant was discarded, and the liquid was added with fluorescein isothiocyanate (FITC) and mixed with the labeled Annexin V, followed by incubation at room temperature for 10 min, further centrifugation and washing with PBS. The cells were resuspended with binding buffer (1×), added with 1 μL inorganic phosphate in the dark and placed at room temperature for 30 min, followed by filtration through the nylon mesh (40 μm). The apoptosis rate was measured using fluorescence-activated cell sorting. The cell cycle was analyzed using the data acquisition software CellQuest and the DNA analysis software ModFit LT.

Analysis of related protein expression using Western blotting
The total protein was extracted using radioimmunoprecipitation assay (RIPA) lysis buffer (Beyotime, Shanghai, China), and the protein concentration was determined using the bicinchoninic acid (BCA) kit (Pierce, Rockford, IL, USA). The 10% sodium dodecyl sulfate (SDS) separation gel and spacer gel were prepared. The cell samples were mixed with the sample buffer, heated in boiling water at 100°C for 5 min, subjected to an ice bath and centrifugation, and added into each electrophoresis lane using the pipette for electrophoretic separation of the same amount of proteins. Then the proteins in the gel were transferred onto PVDF membranes, sealed with 5% dry skim milk at 4°C overnight, and incubated with the diluted primary antibodies of VEGF (1:1000), Bcl-2 (1:1000), Bax (1:1000) and GAPDH (1:2500) overnight, washed with phosphate buffered saline (PBS) for 3 times (5 min/time), incubated again with the commercially available HRP-conjugated rabbit anti-immunoglobulin G polyclonal antibody (1:200) at 37°C for 1 h and washed again with PBS for 3 times (5 min/time), followed by color development using ECL solution (ECL808-25, Biromiga, CA, USA) at room temperature for 1 min. Finally, the excess liquid was removed, the proteins were covered with a protective film, and the protein level was observed using the X-ray machine.
Detection of related gene expression via quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

The total RNA was extracted using a TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The myocardial cells were added with 1 mL of TRIzol reagent, vortexed and mixed with 200 μL of chloroform, followed by centrifugation at 12,000 g and 4°C for 10 min. Then the supernatant was transferred into a new tube containing 500 μL of isopropanol and centrifuged again at 12,000 g and 4°C for 10 min, and the supernatant was discarded. The precipitate was washed with 75% ethanol and centrifuged at 12,000 g and 4°C for 10 min, and the RNA precipitate was taken out of the distilled water, stained with hematoxylin and eosin-ethanol mixture for 1-3 min and washed again, followed by dehydration with 95% ethanol for 1 min and 100% ethanol for 5 min. Then the sections were reacted in the mixture of xylene and ethanol (1:1), placed in xylene I for 5 min and xylene II for 5 min, sealed with neutral balsam and stored. Finally, the pathological changes in myocardial tissues were observed under the light microscope.

Detection of apoptosis using TUNEL/DAPI immunofluorescence assay

The myocardial tissues obtained (n=3 per group) were immediately fixed with 4% paraformaldehyde, dehydrated, embedded in paraffin and sliced into 4 μm-thick sections using a microtome. The sections were placed on the glass slide, baked in an oven at 65°C for 10 min, dehydrated with xylene and ethanol, and washed with PBS 3 times (5 min/time). Then the apoptosis after treatment was detected using the TUNEL/DAPI immunofluorescence assay kit (Beyotime Institute of Biotechnology, Shanghai, China), and the number of nuclei was assessed via 4',6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, St. Louis, MO, USA) staining. The TUNEL-positive cells were observed under a fluorescence microscope (400×, Leica, Wetzlar, Germany), and the area of TUNEL- and DAPI-positive cells was determined using ImageJ software (NIH, Bethesda, MD, USA).

Statistical analysis

Statistical Product and Service Solutions (SPSS) 21.0 software (IBM, Armonk, NY, USA) was used for data analysis. All experiments were repeated 3 times in each group. Differences between two groups were analyzed by using the Student's t-test. Comparison between multiple groups was done using a One-way ANOVA test followed by Post Hoc Test (Least Significant Difference). P<0.05 suggested the statistically significant difference.

Results

Effect of miR-320a on cardiac function

The expression of mature miR-320a in rats was controlled using rAAV-miR-320a. First, it was confirmed via PCR that rAAV-miR-320a treatment increased the expression of miR-320a, while rAAV-miR-320a TuDs reduced the expression of miR-320a in heart tissues (Figure 1A). Next, echocardiography was performed to detect the effect of miR-320a on cardiac function. Interestingly, it

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence</th>
</tr>
</thead>
</table>
| VEGF | F: 5′-AGCCAGAAA ATCACTGTGAGCC-3′
 | R: 5′-TTTACTCAAGCTGCCTGCGCA-3′ |
| Bcl-2 | F: 5′-TGGACAACATCCGTCTGGA-3′
 | R: 5′-TCAAAACAGAGTGCGCATGCGT-3′ |
| Bax | F: 5′-GGTTTCATCCAGGATCGAGCA-3′
 | R: 5′-CGTCAGAACATCATCCTCTCAGCA-3′ |
| β-actin | F: 5′-ATGAAGATCTGACCGAGCGTG-3′
 | R: 5′-CTTGTGCTGTATCCACATCCTCGTG-3′ |

(36209ES01, Qian Chen Biological Technology Co., Ltd., Shanghai, China).
was found that rAAV-miR-320a TuDs improved cardiac dysfunction, while rAAV-miR-320a aggravated cardiac dysfunction (Figure 1A). Both EF and FS in the rAAV-miR-320a TuDs group were also significantly improved compared with those in the control group (Figure 1B & 1C), and both LVIDd and LVIDs declined in rAAV-miR-320a TuDs group (Figure 1D & 1E).

Effect of miR-320a on myocardial apoptosis

Compared with that in the control group and rAAV-miR-320a group, the apoptosis rate in the rAAV-miR-320a TuDs group was increased (\(P<0.05 \)), indicating that inhibiting miR-320a activates the VEGF signaling pathway and increases myocardial apoptosis (Figure 2).

Inhibiting miR-320a could increase the protein levels of VEGF and Bax, and decrease the protein level of Bcl-2

Compared with the control group and the rAAV-miR-320a group, the rAAV-miR-320a TuDs group had increased protein levels of VEGF and Bax (\(P<0.05 \)), but a decreased protein level of Bcl-2. The above results demonstrate that miR-320a TuDs raise the protein levels of VEGF and Bax, resulting in increased protein levels of the signaling pathway and apoptosis-related genes (Figure 3).

Inhibiting miR-320a could increase the mRNA levels of VEGF and Bax, and decrease the mRNA level of Bcl-2

Compared with the control group and the rAAV-miR-320a group, the rAAV-miR-320a TuDs group had increased mRNA expressions of VEGF and Bax, but a decreased mRNA expression of Bcl-2 (\(P<0.05 \)). It can be seen that miR-320a TuDs can raise the mRNA expressions of VEGF and Bax, and lower the mRNA expression of Bcl-2, thereby increasing the mRNA expressions of signaling pathway and apoptosis-related genes (Figure 4).

Inhibiting miR-320a remarkably enhanced myocardial apoptosis

The morphology of myocardial tissues was observed using HE staining. In the rAAV-miR-320a group, myocardial cells were seriously damaged, necrotic tissues were infiltrated by many neutrophilic granulocytes, and surviving myocardial cells were distributed disorderly compared with the control group. However, the myocardial tissues in the rAAV-miR-320a TuDs group were improved. The number of apoptotic myocardial cells in the rAAV-miR-320a TuDs group was remarkably larger than that in the control group and rAAV-miR-320a group (\(P<0.05 \)) (Figure 5).

Discussion

MI occurs in the case of coronary artery occlusion in patients, leading to myocardial hypoxia, and death of
miR-320a in myocardial infarction rats, 2023, 69(12): 170-175

Yong Liu et al. / MiR-320a in myocardial infarction rats, 2023, 69(12): 170-175

myocardial and non-myocardial cells. Then left ventricular remodeling or maladaptation and even heart failure will be induced (1). MI has a high mortality rate in the world, which is one of the most important factors for disability globally (2). MI can also induce a sterile inflammatory response and lead to poor ventricular remodeling (3). Many factors contribute to the development of MI, including genetic and some controllable factors, such as age, systolic blood pressure, hypertension, cholesterol, diabetes, smoking history and abnormal body mass index (4,5). The mortality rate of acute MI declines with the timely revascularization of ischemic myocardium, but its long-term mortality rate remains high (6). Therefore, new therapeutic methods must be found to reduce the death and disability caused by MI.

Apoptosis is a kind of programmed cell death characterized by cell membrane blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation and chromosomal DNA fragmentation. It is reported in many clinical and subclinical studies that the apoptotic pathway is activated in MI, and it has been found that 11 Bcl-2 family members play key roles in promoting or inhibiting the intrinsic apoptotic pathway triggered by mitochondrial dysfunction. Therefore, the balance between pro-apoptotic and anti-apoptotic factors can determine the cell fate. Bax and Bcl-2 are major members of the Bcl-2 family, the former of which responds to different cellular stress through the outer mitochondrial membrane to promote cell death, but the latter of which prevents apoptosis through inhibiting the activity of Bax.

About 940 out of 10,000 miRNAs have been identified as the post-transcriptional regulators of human health-related genes. It is known that different miRNAs in a variety of cells and tissues are biomarkers for the detection of the occurrence and development of diseases, and they also exert therapeutic effects (9). It has been previously reported that miRNAs serve as biomarkers and therapeutic targets for heart failure, players in cardiac remodeling or mediators of transcriptome and proteomic molecules during heart failure. According to previous studies, several miRNAs can be used as key factors controlling the pathophysiological sequelae of acute MI. Therefore, this study was conducted to reveal whether miR-320a plays a role in the treatment of MI through the VEGF signaling pathway. MiRNAs are small non-coding RNAs that bind to complementary sequences on mRNAs and regulate many biological processes. It is known that many miRNAs are involved in the pathophysiology of heart diseases, as well as the repair and regeneration of heart tissues. Recent studies have reported that miRNAs, including miR-15b (14), miR-34a (15), miR-92a (16) and miR-320 (17), are involved in regulating myocardial apoptosis after MI. However, the related regulatory mechanism of miR-320a in myocardial apoptosis after MI has not been reported in detail yet (18,19).

Conclusions

In the present study, the silencing of miR-320a expression in myocardial cells of MI rats raised the expressions of VEGF and Bax, indicating that miR-320a silencing can increase the myocardial apoptosis and the VEGF expression in MI. In conclusion, the results of this study confirm the effect of miR-320a on myocardial apoptosis in MI, which suggests that inhibiting miR-320a facilitates myocardial apoptosis through the VEGF signaling pathway.

Conflict of Interest

The authors declared no conflict of interest.

References

7. Salimath AS, Phelps EA, Boopathy AV, et al. Dual delivery of

Figure 4. mRNA levels of VEGF, Bax and Bcl-2 in myocardial cells. *P<0.05 vs. control group.

Figure 5. Evaluation of myocardial apoptosis. The ratio of TUNEL-positive cells to DAPI-positive cells. *P<0.05 vs. control group.

