Impact of apigenin and seashell nano-additives on the antifungal and roughness behavior of a soft denture liner

Nadia Tawfiq Jaffer 1*, Rizgar Mohammed-Ameen Hasan 3, Ghada Abd Alrhman Taqa 3

1 Prosthodontics Department-College of Dentistry/ Duhok University- Iraq
2 Prosthodontics Department-College of Dentistry/ Hawler Medical University- Iraq
3 Dental Basic Science Department-College of Dentistry/ Mosul University- Iraq

ARTICLE INFO

Original paper

Article history:
Received: March 24, 2023
Accepted: June 15, 2023
Published: September 30, 2023

Keywords:
Antifungal; Apigenin; Seashell; Soft liner; Roughness

ABSTRACT

Fungal colonization of the soft denture liner is the first step in the development of denture-induced stomatitis. The study aims to assess apigenin and seashell nano-additives for their antifungal efficacy and their impact on the surface roughness of a soft denture liner. The study was accomplished in the Colleges of Dentistry in Duhok, Mosul and Hawler Medical Universities. The Antifungal efficacy against Candida albicans was performed by the minimum inhibition concentration (MIC), for apigenin the MIC was determined by agar well diffusion and set at (0.25%, 0.5% and 1%) while for seashells, MIC was determined by broth dilution and set at (1.25%, 2.5% and 5%). Fungal adhesion was conducted on seven groups (unmodified soft liner and six groups of the modified liner with the antifungal concentrations (three for each nanoparticle). A total of forty-nine square-shaped specimens (10*10*2mm) of (GC, Super-soft, heat-cured, USA) soft liner were prepared, and the average surface roughness was obtained in µm using a profilometer (Talysurf, Taylor Hobson, UK). Apigenin and seashell-modified soft liner observed a significant decrease in both fungal adhesion and surface roughness compared to the unmodified liner and the reduction was related directly to the concentration of both additives. Apigenin and seashell nano-additives were effective as antifungal agents beside improving the surface roughness of the soft liner.

Doi: http://dx.doi.org/10.14715/cmb/2023.69.9.6

Copyright: © 2023 by the C.M.B. Association. All rights reserved.

Introduction

Soft denture lining materials have been used in the treatment of traumatized denture-bearing mucosa, in severe bony undercuts, in xerostomia, in edentulous arches opposing natural dentition, in oral defects requiring obturation and in advanced resorption of the alveolar ridges where patients cannot tolerate hard denture bases, the rehabilitating effect of these liners on the unhealthy tissues through reducing and evenly distributing masticatory forces on the basal seat mucosa makes the wearing of the denture more comfortable and acceptable (1).

However, during their clinical use soft liners have many drawbacks, the colonization of pathological microorganisms especially Candida albicans the most human fungal pathogen responsible for oral mucosa infection, is a crucial first step in the initiation and development of denture-induced stomatitis which is characterized by the inflamed and erythematous mucosa which is covered by the denture (2). Besides the irregularities in the denture fitting surface enhancing the plaque formation and infection potential (3), denture surface roughness has a direct relationship with the microbial retention on the surface making it a reservoir that harbors microorganisms which will adversely affect the liner serviceability and deteriorate its structure and properties (4). With the emergence of resistant Candida strains to conventional antibiotics whether the resistance is built-in or acquired due to prolonged or misuse of the antifungals and the ability of most of the fungi to form biofilms in spite of using the antifungal agents regularly, there is a biological inquiry to use novel and more effective agents in geriatric and immunosuppressed patients (5).

The incorporation of nano-sized particles has been an effective means to get benefits of the superior properties of the nanoparticles (6). Silver, Titanium and Zirconium have been incorporated to reduce the microbial load in the oral cavity and to decrease the chance of developing denture-induced stomatitis (7).

Nano-particle incorporation of a natural origin into soft liners is so practical. Apigenin a natural trihydroxy flavone, mostly presents in fruits and vegetables like parsley, oranges, onion and tea (8) has gained attention due to its multiple bioactivities, the revealed biological functions of apigenin include anti-oxidant, antimutagenic, anticarcinogenic, anti-inflammatory, in addition to antibacterial, antiviral, antifungal, and antiparasitic effectiveness (9). Medically, apigenin possessed oxidative damage of the free radicals, a decrease in the glucose level as well as an acceleration in the wound healing rate (10-12).

Seashell, a protective structure of mollusk’s, such as oyster’s or a clam’s (13), is mostly composed of calcium oxides, mainly calcium oxide followed by magnesium

* Corresponding author. Email: nadiya.tawfiq@uod.ac

Cellular and Molecular Biology, 2023, 69(9): 37-42
oxide and trace amount of iron oxide. Seashell had been used in the synthesis of (HA) and the preparation of calcium-based dental cements, and proved to demonstrate antibacterial activities against Streptococcus mutans, oral Lactobacilli and Enterococcus faecalis (15,16).

The present study aims to assess apigenin and seashell nano-additives for their antifungal efficacy and their impact on the surface roughness of a soft denture liner.

Materials and Methods

Isolation of Candida albicans

Candida albicans had been selected as a model fungal organism in this study as it is the main cause of candidiasis, culture was obtained from the microbiology laboratory center- dental basic science department in the College of Dentistry/Duhok University. To ensure its purity, Candida albicans was cultivated on Sabouraud Dextrose agar and germ tube test by a special microbiologist (17). The culture was then subcultured on Sabouraud dextrose agar (SDA); (Oxoid, UK) plates and incubated for 24 h at 37° C. Cells were harvested by refrigerated centrifuge (6000 rpm/4°C/15 min) and then were washed twice in phosphate–buffer saline PBS, Candida albicans was diluted to a suspension of (0.5 McFarland standards) which is about 10° colony forming unit (CFU/ml), 2 ml of the suspension in PBS was added to a petri dish that contained the test samples and incubated for 1hr at 37°C (18).

Determination of antifungal effect

The Minimum Inhibitory Concentration (MIC) is the lowest antimicrobial agent concentration that prevents the visible growth of a microorganism. These evaluations are quite useful to determine the most appropriate concentrations required in the final antimicrobial agent that will be dependent on the adhesion assay.

Determination of MIC for apigenin nanoparticles (Agar well diffusion method)

A volume of Candida albicans inoculum had been spread on the entire plate surface of Sabouraud Dextrose agar. Then, four holes with a diameter of 6 mm and 1 mm depth were punched aseptically with a sterile cork-borer on each plate, so that the wells were lying within the lawn culture. Nystatin was used as a control antifungal agent and a volume of the apigenin solution at concentrations of (0.25%, 0.5%, 1%, 2%, 4%, 6%, 8% and 16%) were introduced into the wells. Then, the plates were incubated at 37°C in a shaking incubator. The lowest concentrations that exhibited clear zones around the wells (minimum inhibition zone) representing the diffusion of the apigenin in the agar medium and inhibited the growth of the microbial strain was determined visually and considered as the MIC (19). The mean inhibition diameter was measured by the average diameter around the well using a metallic scale (20). Five independent experiments (n=5) were performed.

Determination of MIC for seashell nanoparticles (Broth dilution method)

The procedure involved the preparation of two-fold serial dilutions of the antimicrobial agent in brain heart infusion broth (21), six times the serial dilution was carried out to obtain suspension with 0.312%, 0.625%, 1.25%, 2.5%, 5% and 10% of the seashell nanoparticle concentration. Besides, two tubes were prepared, the negative control (the seashell nanoparticles with the broth without C. albicans inoculum) and the positive control (the broth inoculated with Candida albicans without nanoparticle). A volume of 0.1 ml of Candida albicans-containing broth was dispensed in all tubes containing 2 ml (macrodiilution of nanoparticle concentrations) Then, after well-mixing, the inoculated tubes were incubated for 24 h at 37°C. The MIC was determined and confirmed after culturing 0.1 ml of each tube solution in a previously prepared plate containing Sabouraud Dextrose agar and after incubation in a shaking incubator at 37°C for 24 h.

Soft liner specimens’ preparation

A total of forty-nine square- shaped specimens (10mm×10mm×2mm) of (GC, heat cured Super-soft, USA) acrylic soft denture lining material were prepared for testing the fungal adherence ability and additional forty-nine specimens of (10mm×20mm×3mm) dimensions were prepared for roughness measurement and distributed into seven groups of the study (control, apigenin modified with 0.25, 0.5 and 1%, seashell modified with 1.25, 2.5 and 5%) with a mixing ratio of 5 gm powder to 4 ml liquid according to the manufacturers’ instructions. The additives were added to the soft liner’s liquid, and the weight of the additive powder was subtracted from the soft liner powder’s weight. The additive powder with the liner’s liquid were mixed together and put inside a sonicator in order to uniformly distribute the nano-powder, the liquid and powder of the soft liner were mixed together and covered till reached the dough stage then the mixture was packed into stone molds previously prepared in the required specimens’ dimensions. The material was cured in hot water at 165°F for approximately 30 minutes and then boiled for ten minutes according to the instructions of manufacturers’.

Adhesion assay

The MIC results of the apigenin and seashell nanoparticles had been determined to use the most effective concentrations for each nanoparticle in the adhesion assay. Apigenin was recorded sharply by agar well diffusion against Candida albicans at three concentrations (0.25%, 0.5% and 1%), while seashell registered its most powerful antifungal concentrations by broth diffusion method at (1.25%, 2.5% and 5%), Figure (1).

Candida albicans adherence ability

A suspension of 0.5 McFarland standards Candida albicans was prepared. The sterile specimens of the soft liner were deposited in sterile plates containing 20ml of the prepared suspension and incubated for 1hour at room temperature. Then, the specimens were removed from the
suspension and rinsed twice for one minute by phosphate buffered saline solution (PBS) to eliminate the non-adhered cells, and with sonication for 15min, the specimens were dried and fixed with 1 ml of methanol (7,22). The staining was carried out using crystal violet for 30 seconds, specimens were washed with (PBS) solution again for 30 seconds, and were dried with filter paper to be inspected under a light microscope 10X (Carl Zeiss, Germany). The adhered cells were enumerated for each specimen in four fields and the results were expressed as fungal cells/mm².

Surface roughness measurement
The soft lining specimens were inspected for surface roughness using a profilometer (Talysurf, Taylor Hobson, UK) with a 0.25µm Diamond stylus head at 0.5 mm/sec speed and a cut-off length of 2.5 mm. Three readings were obtained at three different sites of each specimen surface and the mean of the readings was calculated and considered as the average roughness (Ra µm).

Statistical Analysis
The data were expressed as mean ± SD, for multiple comparisons, and the study groups were analyzed using One-way ANOVA analysis of variance and LSD post-hoc test. The threshold significance was set at P ≤ 0.05.

Results

Adhesion assay, fungal cell/unit area
Table (1) ANOVA showed that there was a highly significant difference among the groups (p < 0.05). Figure (2) showed the results of the Post-hoc LSD (Duncan’s) test, the highest mean of the adherent fungal cells was obtained for the control group (unmodified soft liner), The liner-modified groups observed a decrease in the adhesion of fungal cells in both apigenin and seashell and the adhesion decreased significantly with the increase in the concentration of the additive material, the lowest means were recorded for seashell 5% and apigenin 1% modified liner.

Surface roughness measurement
There was a significant difference among all groups in surface roughness mean values according to the ANOVA test, Table (2). Post hoc LSD test, Figure (3) showed that the highest mean value was obtained for the control group (unmodified soft liner), while a high decrease was obtained for the groups of apigenin and seashell modified liner and the decrease was related directly to the increase in the additives’ concentration, the lowest mean was recorded for seashell 5% modified liner.

Discussion
It is interesting to test the antifungal efficacy of pharmaceutical materials from natural origin at nano scale size impregnated in a soft liner against Candida albicans the commensal and most prevalent opportunistic human fungal pathogen, when there is impairment in the host immunity to reduce as much as possible the development of the denture-induced stomatitis.

Apigenin, a naturally organic, and small occurring biomolecules has been approved to be antimicrobial, antiviral

Table 1. One-way ANOVA test for Candida albicans adherent colonies.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean ± SD</th>
<th>Sum of squares</th>
<th>df</th>
<th>Mean square</th>
<th>F</th>
<th>Sig-P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>7</td>
<td>195.857(25.47)</td>
<td>104220.7</td>
<td>6</td>
<td>17370.12</td>
<td></td>
<td>.000</td>
</tr>
<tr>
<td>Apigenin</td>
<td>0.25%</td>
<td>7</td>
<td>109.857(7.44)</td>
<td>5053.143</td>
<td>42</td>
<td>120.313</td>
<td></td>
</tr>
<tr>
<td>Apigenin</td>
<td>0.5%</td>
<td>7</td>
<td>91.42(6.32)</td>
<td>144.374</td>
<td></td>
<td>144.374</td>
<td>.000</td>
</tr>
<tr>
<td>Apigenin</td>
<td>1%</td>
<td>7</td>
<td>51.142 (3.84)</td>
<td>9053(5.52)</td>
<td>46.00(3.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seashell</td>
<td>1.25%</td>
<td>7</td>
<td>112.00(6.48)</td>
<td>109273.8</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seashell</td>
<td>2.5%</td>
<td>7</td>
<td>90.857 (5.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seashell</td>
<td>5%</td>
<td>7</td>
<td>46.00(3.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>99.59(47.71)</td>
<td></td>
<td></td>
<td>109273.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and antiparasitic flavone (23) and had fulfilled the required conditions of periodontal pathogens species drugs (24).

Apigenin has observed in this study a potent antifungal effect at different concentrations especially at (0.25%, 0.5% and 1%). The antifungal mechanism of apigenin is related to its ability to cause perturbations of the cell membrane, causing cell shrinkage and leakage of the intracellular components and a reduction in the ability of the fungal membrane to maintain its osmotic balance. Additionally, the inhibition of Candida albicans biofilm formation by apigenin will result in an alteration of the membrane and a physical damage of the fungal pathogen by inducing the mitochondrial-mediated apoptotic pathway, and mitochondria calcium signaling is the main factor in its pathway in C. albicans. These activities render apigenin to be effective as a therapeutic antifungal agent and participate in its defense against infection by pathogenic microorganism (25, 26).

Seashells antifungal effect was more potent at concentrations (1.5%, 2.5% and 5%) composed mainly of calcium carbonate and via heat treatments to produce nanoparticles converted into CaO. Subsequently CaO hydrate to produce Ca(OH)2. These seashell-derived components have observed excellent microbicidal activities related to their alkalinity, the primary mechanism of antimicrobial activity (27). In addition the HA hydroxyapatite content in seashell has antibiofilm activity, influencing the production of extracellular matrix, altering the morphological characteristics of cells wall, and decrease in the hyphal cells density, a mechanism that justifies the antifungal activity (28). The secondary mechanism of antimicrobial activity is by the dissociation of CaO in the slurry phase and generation of the high content of Ca2+ and ROS (Reactive Oxygen Species), a cationic environment that bonds with the cardiolipin (negative surface charge) the main lipid in the cell membrane of the pathogen. The binding of Ca2+ and cardiolipin results in changing the cell metabolism, starvation and cell wall rupture of the fungal cell (29,30).

Low roughness values are important to prevent the adhesion of microorganisms. The surface energy is effective in initial adhesion, while surface roughness provides a large surface area enabling the attachment as well as protecting the environment until completing the firm attachment (31).

Both apigenin and seashell nano-additives reported enhancements in the surface roughness of the soft liner when compared to the untreated liner and the effect positively appeared as the concentration of the additives increased. The results are attributed to the small size of the reinforcement materials and the uniform dispersing of the nano additives preventing agglomeration within the soft liner and the small size of the reinforcement materials, besides the higher the concentration of the nanoparticles the greater will be the spaces being filled and the more contact points between the liner and nano additives, thereby providing mechanical interlocking and resulting in a decrease in the plasticizers leakage and surface porosities (32).

Conclusion

The modification of the soft denture liner with apigenin and seashell nano-materials had greatly enhanced its antifungal activity and reduced the fungal adhesion to the liner material. In addition, an improvement in the surface roughness was observed. This modification of the soft liner can be considered as a promising in the prevention of denture-induced stomatitis and providing the patient a more healthier and comfortable denture.

Conflict of Interest

There are no conflicts of interest.

Consent for publications

The author read and proved the final manuscript for publication.

Availability of data and material

All data that were generated during this study are included in this published article.

Authors’ Contribution

All authors had equal role in study design, work, statistical analysis and manuscript writing.

Funding

This research was not funded in the commercial and public.

References

1. Borg HS. One-year clinical investigation of the inclusion of...

32. Gad MM, Abualsaad R, Rahoma A, Al-Thoby AM, Al-Abidi KS, and Akhtar S. Effect of zirconium oxide nanoparticles addi-
tion on the optical and tensile properties of polymethyl methacrylate denture base materials. Int J Nanomedicine 2018; 13: 283-
292. DOI: 10.2147/IJN.S152571