Introduction

As one of the major cardiovascular diseases, coronary artery disease (CAD) also greatly threatens human health all over the world (1). It is commonly acknowledged that the onset of the development of CAD remains silent which makes it difficult to cure (2). The risk factors of CAD include smoking, hypertension, obesity, exercise, insulin resistance and so on (3). Also, it is non-negligible that great improvements in the treatment of CAD have been made (4). Nevertheless, the mortality of CAD remains high. Thence, exploring novel biomarkers to improve the treatment and prognosis of CAD is of great value.

Circular RNAs (circRNAs) have been identified as crucial regulators in many Carcinoma (5). For instance, Liu et al illustrated that circRNA_100367 influences esophageal squamous cell carcinoma cells radio-sensitivity by sequestering miR-217 and mediating Wnt3 the expression of Wnt3 (6). Yang et al proposed that circRNA_100876 induced breast cancer cell proliferation via sponging miR-361-3p (7). Chen et al demonstrated that circRNA cRAPGEF5 is a tumor suppressor in RCC as a competing endogenous RNA (ceRNA) (8). At the same time, circRNAs have also been confirmed to participate in CAD which includes atherosclerosis, ischemia/reperfusion injury and ischemic heart failure (9). For instance, circRNA 010567 is promoting myocardial infarction via regulating TGF-β1 expression (10). Wu et al have exposed that circ_0005540 is closely associated with coronary artery disease (11). Peng et al have clarified that circDHCR24 contributes to vascular restenosis through modulation of the miR-149-5p/MMP9 axis (12).

As Yu et al reported, circ_0006251 has been reported to be dramatically up-regulated in coronary heart disease (13). However, its concrete functions in the progression of CAD still remain elusive. In this research, we focus on measuring the function of circ_0006251 for CAD and investigating the latent regulatory mechanism.

Materials and Methods

Cell culture

VSMCs were from ATCC and incubated in the F-12K Medium containing 10% FBS (Gibco) in 5% CO₂ at 37℃. To establish a CAD model, treatment of VSMCs cells with PDGF-BB.

Cell transfection

pcDNA3.1/PPM1B, pcDNA3.1/TET3 all from GenePharma Company. The shRNAs targeting circ_0006251, miR-361-3p mimics/inhibitors and NC were all from RiboBio (Guangzhou, China). The transfection reagent is lipofectamine 3000 (Invitrogen).

RT-qPCR

RNA was extracted as TRI reagent, cDNA reverse transcription reagent (Toyobo, Osaka, Japan). Using Real-Time PCR Kit (TIANGEN), RT-qPCR was performed. GAPDH or U6 as internal reference controls, and gene expression was analyzed using the 2^ΔΔCt method.

CCK-8 assay

Inoculate 5×10⁴ cells in 96-well plates for culture, added CCK-8 solution at the same time on four consecutive
days, and the cells were incubated for 2 hours protected from light before cell proliferation levels were detached with a spectrophotometer (DeTie).

EdU staining assay
Cells were maintained in 96-well plates for preparation. Under the fluorescence microscope (Olympus), cell proliferation was observed.

Transwell assay
In brief, incubate 2 × 10^4 cells in serum-free medium in Transwell chambers (Corning, NY, USA) for testing cell migration. Using complete medium in the lower chamber, the migrated cell number was observed using a light microscope after 24 hours.

TUNEL assay
After treatment with 4% PFA, transfected VSMCs cells were added to the TUNEL reagent (MedChemExpress, USA). DAPI staining, the labelled samples were analyzed by light microscopy (Olympus).

Flow cytometry analysis
1×10^6 cells were taken and treated with PBS three times. Propidium iodide (PI) and Annexin-V-FITC and were then added and after 15 minutes of incubation, apoptosis was analysed by flow cytometry.

Subcellular fractionation
The cytoplasmic and nuclear RNA of the cells were purified separately using the PARIS kit (MedChemExpress, USA). GAPDH or U6 was used as an internal reference control. The assay was performed three times independently.

FISH
After fixation and permeabilization, VSMCs cells were hybridized with the RNA FISH probe specifically designed for circ_0006251 in the buffer. Hoechst solution was utilized for the counterstain of cell nuclei. The confocal laser microscope (Olympus) was used to observe the images.

RNA pull-down (RPD) assay
VSMCs cells were treated with biotin-labeled circ_0006251, miR-361-3p-Wt or miR-361-3p-Mut probe, added magnetic beads, then washed and purified for PCR analysis. The assay was independently implemented in triplicate.

RIP
Experiments were performed using the RIP Kit (Millipore, Burlington, MA, USA), lysed VSMCs cells in RIPA (Solarbio, Beijing, China) and immunoprecipitated using anti-Ago2 (Abcam) or anti-IgG (Abcam) antibody. RNA precipitates were extracted for analysis.

Luciferase reporter assay
The DUXAP8 or POSTN mRNA 3'UTR) sequences containing miR-361-3p Wt and Mut were inserted into the pmiRGLO dual luciferase vector. After miR-361-3p mimics were co-transfected with the reporter gene into VSMCs cells. 2 days later, luciferase activity was assayed using the Dual-Luciferase Reporter Gene Assay KitWB.

Cells were lysed and protein samples were produced. Sample concentrations were assayed and then separated by SDS-PAGE and transferred to PVDF membranes (Millipore, Billerica, MA, USA) and closed with skimmed milk powder for two hours. Afterward, the primary antibody was incubated overnight at 4°C in the refrigerator. After three washes with PBST, incubated secondary antibody for 1 hour. The antibodies were purchased from Abcam, and the contrast solution was prepared for protein quantification by a chemiluminescence system.

Statistical analysis
SPSS 16.0 (IBM, Chicago, IL) software was used for data analysis and is expressed as mean ± standard deviation (SD). Significant differences between multiple groups were analysed using t-tests or ANOVA. p<0.05 were considered to be statistically significant. All experiments were repeated three times.

Results

The characterization of circ_0006251
As Yu et al reported, circ_0006251 is confirmed to be up-regulated in coronary heart disease and correlated to the progression of coronary heart disease (13). To identify the function of circ_0006251 for CAD, we first utilized PDGF-BB to mimic CAD-like injury. As demonstrated in Figure 1A, By PDGF-BB treatment, the proliferation of VSMCs cells was observably promoted. Besides, flow cytometry results exposed that the apoptotic of PDGF-BB-induced VSMCs cells was attenuated (Figure 1B). Similarly, WB analyzed that by PDGF-BB treatment, the BCL2 level was enhanced while Bax and Cleaved caspase-3 were increased (Figure 1C). Subsequently, by RT-qPCR report, circ_0055412 was continuously elevated with the increasing of PDGF-BB concentrations and time (Figure 2A-B). As exhibited in Figure 2C, circ_0006251 was cyclized from TET3 and predicts the genomic location of circ_0006251 schematically. In addition, we observed that after being treated with RNase R, the expression of linear-TET3 was reduced and circ_0006251 expression remained unchanged, suggesting that RNase R can digest...
transcriptional level

circ_0006251 is highly abundant in the cytoplasm of VSMCs cells (Figure 4A-B), suggesting that circ_0006251 may exert its roles in CAD through ceRNA mechanism. Moreover, when circ_0006251 was down-regulated the TET3 expression was distinctly reduced on account of circ_0006251 deficiencies (Figure 4C-D). In a word, TET3 is positively modulated by circ_0006251.

Circ_0006251 binds to miR-361-3p to target TET3

Considering the past research, we speculated that circ_0006251 may interact with miRNAs to function as miRNA sponges and modulate TET3 expression. Through linear-TET3, while RNase R does not affect circ_0006251. (Figure 2D). Also, we discovered that circ_0006251 could only be amplified cDNA but not gDNA, whereas linear-TET3 could be amplified with convergent primers for cDNA and gDNA in VSMCs cells without PDGF-BB (Figure 2E). Besides, after adding Actinomycin D (Act D), the stability of linear-TET3 became weakened while no observed changes were observed in circ_0006251 (Figure 2F). Briefly, circ_0006251 is up-regulated in PDGF-BB-induced VSMCs cells.

Inhibition of circ_0006251 abrogates the proliferation, migration, and invasion while facilitating the apoptosis of PDGF-BB-induced VSMCs cells

Before the implementation of functional assays, circ_0006251 was knocked down in VSMCs cells after being treated with PDGF-BB and the interference efficiency was examined (Figure 3A). Through CCK-8 assay, cell proliferation was observed and we discovered that the viability of PDGF-BB-induced VSMCs cells was imputed after circ_0006251 was silenced (Figure 3B). Down-regulation of circ_0006251 led to a decrease in cell proliferation (Figure 3C). Similarly, the transwell assay disclosed that the migratory and invasive abilities of PDGF-BB-induced VSMCs cells were both attenuated when circ_0006251 was depleted (Figure 3D-E). In addition, after circ_0006251 was knocked down, the apoptosis of PDGF-BB-induced VSMCs cells was exacerbated (Figure 3F-G). Additionally, WB results indicated that BCL2 was decreased while the levels of Bax and Cleaved caspase-3 were increased in the sh-circ_0006251#1/2 group (Figure 3H). In summary, circ_0006251 may contribute to the development of CAD.

Circ_0006251 modulates TET3 expression at the post-transcriptional level

circ_0006251 is highly abundant in the cytoplasm of VSMCs cells (Figure 4A-B), suggesting that circ_0006251 may exert its roles in CAD through ceRNA mechanism. Moreover, when circ_0006251 was down-regulated the TET3 expression was distinctly reduced on account of circ_0006251 deficiencies (Figure 4C-D). In a word, TET3 is positively modulated by circ_0006251.
starBase, 5 potential miRNAs were predicted and displayed by the Venn diagram (Figure 5A). Further, miR-361-3p was enriched in the biotin-labeled circ_0006251 probe (Figure 5B). Using starBase, miR-361-3p had a potential site targeting circ_0006251 or TET3 (Figure 5C). RIP assay also exhibited a high concentration of circ_0006251, miR-361-3p, and TET3 in the Ago2 antibody (Figure 5D). After transfection of miR-361-3p mimics, (Figure 5E), luciferase enzymatic activity in the circ_0006251-Wt, circ_0006251-Mut, TET3 3'UTR-Wt and TET3 3'UTR-Mut and the binding between miR-361-3p and circ_0006251 or TET3 was verified (Figure 5F). MiR-361-3p inhibitor-induced VSMCs cells to cut down miR-361-3p expression (Figure 5G). Interestingly, reduced the expression of TET3 caused by circ_0006251 was restored by miR-361-3p down-regulation (Figure 5H-I). To testify whether circ_0006251 participated in the progression of CAD via targeting TET3, rescue assays were performed. Firstly, TET3 expression was elevated in PDGF-BB-induced VSMCs cells (Figure 6A). Then, CCK-8 and EdU proved that circ_0006251 interference impeded cell proliferation, however, this effect was indeed fully restored by miR-361-3p inhibition and rescued by TET3 overexpression (Figure 6B-C). Likewise, the experimental results from transwell results unmasked that the inhibited ox-LDL metastasis-induced VSMCs cells were completely offset by down-regulation of miR-361-3p and partially counteracted by overexpression of TET3 (Figure 6D-E). Eventually, flow cytometry analysis, TUNEL assay and WB analysis exposed that circ_0006251 down-regulation induced cell apoptosis was counteracted by miR-361-3p inhibitor and even rescued by up-regulation of TET3 (Figure 6F-H). Overall, circ_0006251 could sponge miR-361-3p and modulates TET3 expression.

PPM1B is a target gene of miR-361-3p

According to the previous findings, we supposed that there was another correlated gene of miR-361-3p. Then screen out the downstream correlated of miR-361-3p, starBase was utilized and 10 potential mRNAs (RC3H2, HOXC6, KDM5C, CHTF8, PODXL, ZDHHC9, SMG1, PPM1B, LPGAT1 and CADM4) were predicted by means of microT, miRmap, PITA and PicTar on the condition of CLIP Data ≥ 5. RT-qPCR analyzed that only PPM1B was found to be distinctly down-regulated with miR-361-3p mimics transfection (Figure 7A). The powerful affinity of miR-361-3p with PPM1B (Figure 7B). The binding sequences between them were exhibited in Figure 7C. Up-regulation of miR-361-3p decreased the luciferase activity in the PPM1B 3'UTR-Wt (Figure 7D). Moreover, miR-361-3p inhibitor rescued the decreased PPM1B expression due to circ_0006251 insufficiency (Figure 7E-F). Collectively, PPM1B is also targeted by miR-361-3p.

Circ_0006251 aggravates the process of CAD by enhancing TET3 and PPM1B expression

To certify the circ_0006251/miR-361-3p/TET3/PPM1B axis in CAD, rescue results were found. First of all, overexpressed the PPM1B in PDGF-BB-induced VSMCs cells (Figure 8A). Cell proliferation assays attested that in the PDGF-BB induced VSMCs cells transfected with sh-circ_0006251#1 plasmid, miR-361-3p inhibition accelerated cell proliferation while PPM1B overexpression rescued this effect and up-regulation of PPM1B and TET3 completely restored this effect (Figure 8B-C). In the same way, the attenuated migratory and invasive abilities of PDGF-BB-induced VSMCs cells after trans-
The importance of circRNAs in human cancers and diseases has been highlighted (5,14). For example, Yu et al have reported that circ_0006251 is one of the up-regulated circRNAs in coronary heart disease (13). Here, circ_0006251 was overexpressed in VSMCs cells after being treated with PDGF-BB. Functionally, interference of circ_0006251 hindered cell function while promoting the apoptosis of PDGF-BB-induced VSMCs cells.

CeRNA) network with circRNAs, miRNAs and mRNAs have been determined to influence the processes of cardiovascular diseases (15). Through our investigation, we first observed that circ_0006251 was chiefly distributed in the cytoplasm of VSMCs cells. Subsequently, the host gene of circ_0006251, TET3 expression was discovered to be positively regulated by circ_0006251. It is widely reported that miR-361-3p plays a suppressive role in lung cancer (16), cervical cancer (17), thyroid cancer (18) and so on. Moreover, Zhong et al manifested that miR-361-3p was down-regulated in CAD (19). Likewise, our findings validated that circ_0006251 and TET3 competitively had a binding with miR-361-3p. The interaction among circ_0006251, miR-361-3p and TET3 was also verified by mechanism assays. Rescue assays also proved that the inhibited CAD progression on account of circ_0006251 depletion was rescued by miR-361-3p inhibition and partially restored by TET3 overexpression.

PPM1B has been investigated in necroptosis (20), bladder cancer (21) and hepatocellular carcinoma (22). Furthermore, PPM1B participates in the progression of coronary atherosclerosis (23). Our study also attested that PPM1B was also a target gene of miR-361-3p. Eventually, rescue assays demonstrated that overexpression of TET3 and PPM1B completely offset the suppressive role of circ_0006251 inhibition in CAD which indicated that circ_0006251 aggravates the development of CAD via elevating TET3 and PPM1B expression.

All in all, circ_0006251 was testified overexpressed in PDGF-BB induced VSMCs cells. Functionally, reducing circ_0006251 restrained the cell function while inducing the apoptosis of PDGF-BB-induced VSMCs cells. In terms of mechanism, circ_0006251 could be sponging miR-361-3p to modulate the TET3 and PPM1B expression, thereby getting involved in the progression of CAD. Briefly, circ_0006251 was demonstrated to be a potential biomarker for the diagnosis and therapy of CAD.

However, there also have limitations in our research, other regulatory mechanisms of circ_0006251 in CAD need to be explored. In addition, whether signaling pathways participate in the progression of CAD also needs to be found.

Acknowledgements

Many thanks to all the laboratory staff for their help in this study.

Conflicts of interest

No conflicts of interest were declared.

References

doi.org/10.1002/jcp.28350

