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Introduction

Cutaneous melanoma (CM) remains the most life-
threatening form of skin cancer, with an annual increase of 
more than 3% (1). Melanin pigmentation and melanogene-
sis are important phenotypic characteristics of melanoma 
(2, 3). Recent advances in immune checkpoint inhibitors 
(ICIs) and targeted therapies have led to significant impro-
vements in long-term survival in CM patients (4). Howe-
ver, although the scientific advances in CM therapy have 
been significant, approximately two-thirds of patients 
treated with immune checkpoint monotherapy progressed 
(5). During the carcinogenesis process, melanoma deve-
lops multiple mechanisms to overcome chemotherapy and 
immunotherapy. In addition to affecting melanin pigmen-
tation and melanogenesis (6, 7), multiple methods can also 
affect the therapeutic effect, including neuro-regulatory 
factors and corticosteroids producing (8), drug sensitivity 
regulation (9), cell metabolism regulation (3). In view of 
the incomplete clinical efficacy, it is of positive clinical 
significance to further evaluate the possible prognostic-re-
lated mechanisms and their impacts on clinical efficacy.

Following the discovery and demonstrated biological 
functions of multiple programmed cell death (PCD) types, 
increasing evidences have shown extensive interactions 
between these programmed cell deaths, including pyrop-
tosis, apoptosis and necroptosis (10-13). PANoptosis was 
defined in 2019 as an inflammatory PCD pathway media-
ted by the PANoptosome complex with key features of 
pyroptosis, apoptosis and/or necroptosis that cannot be ex-
plained by a single PCD. PANoptosome is a multi-protein 
complex that acts as a scaffold platform for the activation 
of key molecules in the pyroptosis, apoptosis and necrop-

tosis processes (14). The study of PANoptosis is still in its 
infancy and several important targets have been identified 
to mediate its activation, including AIM2, CASP family, 
ZBP1, RIPK1/3 and IRF1 (15).

PANoptosis is now known to be closely linked to a 
number of diseases, including cancer. PANoptosis has 
been shown to have the potential to kill cancer cells (16). 
Although there is no direct evidence of the role of PANop-
tosis in CM, several key factors of the PANoptosis process 
are associated with tumor progression. Caspase-6 plays a 
crucial role in human tumorigenesis by regulating PANop-
tosis and may be an important target for tumor prevention 
and treatment (17). Z-DNA binding protein 1 (ZBP1) is a 
key factor in PANoptosis that initiates the assembly of PA-
Noptosome (10, 18), which is positively associated with 
tumor aggressiveness in breast cancer. In addition, inter-
feron regulatory factor 1 (IRF1) is recently identified as a 
key regulatory factor in the tumor-associated PANoptosis 
pathway (19). As an essential transcription factor for the 
programmed cell death ligand 1 (PD-L1) gene, IRF1 plays 
a central role in innate and adaptive immunity and is also 
involved in tumor progression (20). Therefore, the above 
evidence suggests that it is necessary to (20) further clarify 
the role of PANoptosis in CM.

In today's era of "big data" and personalized medicine, 
bioinformatics has been shown to help increase our un-
derstanding of CM heterogeneous nature (21). In this stu-
dy, we analyzed the molecular subtypes of CM based on 
PANoptosis-associated genes (PAGs) and further analyzed 
the correlation between different molecular subtypes and 
immune microenvironments and immunotherapy reactivi-
ty. After screening for PAGs with differentially expressed 
molecules, a PAGs signature was established that could 
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effectively predict prognosis in CM patients. Immuno-
infiltration analysis, tumor mutation burden (TMB), im-
munotherapy and drug sensitivity analysis were used to 
further analyze the reasons for the difference in signature 
prognosis. Our study provides a new perspective on the 
role of PANoptosis in CM.

Materials and Methods

Data Acquisition
The publicly accessible transcriptome data of CM was 

acquired from the GTEx, TCGA and GEO databases. The 
expression data of skin normal tissues was extracted from 
the UCSC Xena database (https://xenabrowser.net/data-
pages/). Transcriptome data of CM was acquired from the 
TCGA and GEO database, with 471 samples (1 normal 
sample and 470 CM samples) in TCGA-SKCM and 214 
CM samples in GSE65904. The clinical information cor-
responding to each sample was obtained from the TCGA 
and GEO databases, excluding those without survival 
time, and we included 668 samples for the study in total. 
The R package “sva” was performed to remove the batch 
effect of the transcriptome data and merged the files into 
the final matrix. The copy number variation (CNV) and 
tumor mutation burden (TMB) files (maf format) of CM 
were got from the TCGA database. 

Difference analysis and protein-protein interaction 
(PPI) network analysis

A total of 14 PANoptosis-associated genes (PAGs) 
were obtained from the previous literature (22). The dif-
ference expression analysis of the PAGs in normal and 
tumor tissues was performed at |fold change| ≥ 1, and P 
< 0.05. The STRING database was utilized to explore the 
protein-protein interaction of PAGs (https://cn.string-db.
org/). RCircos package was conducted the display the 
location of PAGs in the chromosome in the R landscape 
environment. The CNV of PAGs was extracted from the 
TCGA dataset, including two types of PAGs (amplifica-
tion and deletion). Maftools package was adopted to exhi-
bit the mutation frequency of PAGs for CM. 

Unsupervised consensus clustering analysis for PAGs 
subgroups

An unsupervised consensus clustering analysis was 
developed to explore the molecular pattern for CM. 
According to the expression profile of PAGs in CM, the 
ConsensusClusterPlus package was used to cluster the CM 
samples into different molecular subgroups. The associa-
tion of PAGs expression profile, clinical characteristics, 
and clinical prognosis outcome was generated via the 
“pheatmap” package. “survival” package was adopted to 
explain the overall survival (OS) rate of CM in the dif-
ferent molecular patterns. Principal component analysis 
(PCA) was carried out to explore the distribution pattern 
of PAGs-based molecular pattern via the “ggplot2” pac-
kage. The gene set variation analysis (GSVA) was prac-
ticed to explore the KEGG terms of the molecular pattern 
referenced to the gene set (c2.cp.kegg.v7.4.gmt). 

Characteristic of the tumor microenvironment (TME) 
ESTIMATE algorithm was used for evaluating the 

immune cell and stromal score of CM. Second, by calcu-
lating the gene matrix and the proportion of 23 immune 

cell marker genes, we obtained the percentage of 23 im-
mune cells for CM via ssGSEA algorithm. A Limma pac-
kage was conducted to visualize the immune checkpoints 
(ICPs) expression. 

Generation of the differential expression genes in mole-
cular subtypes pattern

To explore the differential expression genes (DEGs) in 
the PAGs-based molecular pattern, we conducted “limma” 
package to calculate the DEGs between the molecular pat-
tern with the threshold set at |fold change| > 2 and P < 0.05. 
Then, the intersection genes between different molecular 
subgroups were screened via the “VENN” package. clus-
terProfiler package was adopted to investigate the mole-
cular function and enriched the DEGs into gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG). 

Development and validation of the PAG score
In first, the PAGs-based subgroups DEGs were enrol-

led to develop the PAG score of each CM sample. On the 
basis of “LASSO” and univariate Cox analysis (uniCox) 
algorithm, the characteristic variates associated with OS 
rate were obtained. Second, those important variates were 
enrolled for multivariate Cox analysis to explore the inde-
pendent prognostic variates. The PAG score of CM was 
explored as the following calculation formula: PAG score 
= CST7 x -0.823 + NAGK x 2.389 + FBXO6 x -0.835 
+ PSME1 x -2.093 + USP3 x -1.138 + RTN1 x -0.581. 
According to the median value division, the PAG score of 
CM was classified in low- and high-PAG score groups. To 
validate the independence and accuracy of the PAG score 
for CM, a caret package was carried out to divide the CM 
samples into training cohort and test cohort with the cri-
teria set at 7:3. Then, the PAG score of the training cohort 
and test cohort was calculated according to the important 
variates, respectively. pheatmap package was applied to 
display the association of PAG score and clinical progno-
sis outcome for CM. 

Nomogram construction and clinicopathological sub-
groups analysis

Integration of clinical information from TCGA-SKCM 
and GSE65904, we developed a nomogram model to eva-
luate the 1-, 3-, and 5-year clinical survival probability of 
CM via “rms” package. Univariate/multivariate Cox ana-
lysis was carried out to explore the independence of PAG 
score and clinical features (age and gender). The Time-
ROC package was used to investigate the time-dependent 
ROC curve at 1-, 3-, and 5-year. Regplot package was per-
formed to explore the calibration curve of the clinical sur-
vival outcome predicted by nomogram and actual clinical 
survival outcome. The Concordance index (C-index) was 
carried out to evaluate the accuracy of the PAG score and 
clinical features in predicting clinical survival outcomes 
for CM via “rms” and “pec” packages. On the basis of the 
PAG score, the clinical survival outcomes of CM in age 
and gender with low- and high-PAG scores were explored 
via the “survival” package. 

Immunotherapy response, tumor mutation burden 
and chemotherapy drug prediction

Based on expression profiles of CM, the tumor immune 
dysfunction and exclusion (TIDE) was predicted to eva-
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condition of unsupervised classification, the CM patients 
were clustered into 3 subgroups, including 206 samples 
in cluster A, 185 samples in cluster B, and 277 samples in 
cluster C (Figure 2A). In 3 unsupervised classifications, a 
significant difference of clinical outcome was observed for 
CM. The Kaplan-Meier survival curve suggested the OS 
rate in cluster C was better than those in cluster B and C (P 
= 0.002, Figure 2B). PCA result also demonstrated signi-
ficant separation between the 3 subgroups, indicating the 

luate the immunotherapy response for CM (http://tide.
dfci.harvard.edu/). The cancer immunome atlas (TCIA) 
database was used to explore the immunotherapy response 
for PD-1 and CTLA-4 (https://tcia.at/home). Tumor muta-
tion burden (TMB) files of CM were downloaded from the 
TCGA database, and the TMB matrix of low- and high-
PAG score groups was extracted in the Perl language envi-
ronment. Maftools package was carried out to explore the 
top 15 somatic mutation frequencies in low- and high PAG 
score groups. The chemotherapy drug sensitivity of CM 
was predicted by genomics of drug sensitivity in cancer 
(GDSC) database via pRRophetic package. 

Statistical analysis
All data analysis for this study was carried out in R lan-

guage environment (https://cran.r-project.org/). The sta-
tistical analysis between two groups was performed using 
Wilcoxon rank-sum test analysis, or ANOVA statistical 
analysis if there were more than two groups. Spearman's 
correlation was used to count the correlation between the 
PAG score and immune cells. P < 0.05 was considered sta-
tistically different.

Results

Analysis of PAGs expression and mutation frequency 
in CM

Combined with GTEx and TCGA database, we extrac-
ted 14 PAGs to explore the role of PAGs in CM tumourige-
nesis and development. The difference analysis of PAGs 
suggested that the expression of ZBP1, NLRP3, RIPK1, 
CASP6 and FADD were overexpressed in tumor tissues, 
whereas the expression of RIPK3, CASP8, PYCARD, 
MAP3K7, TNFAIP3, RNF31, and PSTPIP2 were higher in 
normal tissues (Figure 1A). PPI network analysis showed 
a clear association between 14 PAGs (Figure 1B). Soma-
tic mutation analysis revealed the mutation landscape of 
PAGs, and the result showed that the frequency of NLRP3 
was 10%, which was the highest mutation gene in CM (Fi-
gure 1C). In addition, the circle diagram showed the posi-
tion of PAGs on the chromosome (Figure 1D). As shown in 
Figure 1E, the CNV frequency of 14 PAGs suggested that 
4 PAGs (FADD, RIPK1, NLRP3 and ZBP1) demonstrated 
CNV amplifications, whereas 4 PAGs (CASP1, TNFAIP3, 
CASP6 and MAP3K7) showed CNV deletions. Accor-
ding to univariate Cox analysis, the correlation of PAGs 
expression and prognostic significance was illustrated in a 
network (Figure 1F). A clear correlation among 14 PAGs 
expression levels was observed; a negative correlation was 
explored between PYCARD and MAP3K7, and a positive 
correlation was observed in other PAGs. Moreover, the 
Cox test result identified 8 PAGs as favorable factors for 
CM (P < 0.05). These findings demonstrated the potential 
role of PAGs in the development of CM and were associa-
ted with mutation burden, prognosis and CNV. 

PAGs-based subgroup analysis and TME evaluation of 
CM

668 CM samples were enrolled from the TCGA and 
GEO databases to investigate the relationship of PAGs 
and tumourigenesis. To determine the potential associa-
tion between PAGs and CM subgroups, we conducted a 
consensus clustering analysis to classify the CM patients 
based on the expression profiles of PAGs. Under the 

Figure 1. Analysis of PAGs expression and somatic mutation lands-
cape in CM. (A) The expression of PAGs in normal tissues and tumor 
tissues for CM. (B) PPI network analysis of PAGs. (C) Mutation 
frequency of PAGs in CM. (D) The circle diagram shows the loca-
tion of PAGs on the chromosome. (E) CNV frequency of PAGs (gain, 
loss). (F) Correlation analysis of PAGs and prognostic for CM.

Figure 2. PAGs subgroups identification and TME landscape of CM. 
(A) Consensus clustering analysis of CM patients. The consensus 
matrix = 3. (B) Kaplan-Meier analysis of CM samples in cluster A, 
B, and C. (C) PCA plot of 3 PAGs-based subgroups. (D) Expression 
of PAGs and clinical features of CM in 3 PAGs-based subgroups. (E) 
Immune infiltration score of 23 immune cells in cluster A, B, and C. 
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unsupervised classification of CM was accurate (Figure 
2C). The expression of 14 PAGs and clinical features of 
CM patients in 3 subgroups were further explored, and the 
result indicated a substantial difference of PAGs expression 
and clinical features in different PAGs subgroups (Figure 
2D). We further estimated the relationship between TME 
and PAGs. The ssGSEA result suggested that the immune 
infiltration score of 23 immune cells was greatly higher 
in cluster C than in cluster A and B, showing an immune 
activation status of CM patients in cluster C (Figure 2E). 
These results revealed that the CM patient could be clas-
sified into 3 independent subgroups based on PAGs, and 
correlated with prognosis and immune infiltration.

Characteristic of immunotherapy response in different 
PAGs-based subgroups

Considering the potential association between PAGs 
and the immune-infiltration landscape, the immunothe-
rapy responses of CM in 3 subgroups were further estima-
ted. According to GSVA analysis, a remarkable difference 
in immune-related signaling pathways was observed in 3 
PAGs-based subgroups, such as the T cell receptor signa-
ling pathway, the T cell B receptor signaling pathway, and 
the Toll like receptor signaling pathway (Figure 3A, B). 
The ESTIMATE score suggested that the stromal, im-
mune, and ESTIMATE scores of CM in cluster C were 
significantly higher than cluster A, and cluster B, whereas 
tumor purity was lower in cluster C, showing a better im-
mune and stromal status for CM in cluster C (Figure 3C-
F). TIDE result revealed that the CM patients in cluster C 
had the highest TIDE score than cluster A and B, indica-
ting a worse response for immunotherapy for CM in clus-
ter C (Figure 3G). Additionally, we evaluated the response 
to CTLA-4 and PD-1 treatment of CM in 3 subgroups, 
and the results illustrated that the CM patients in cluster C 
were more sensitive to CTLA-4, PD-1, and CTLA-4/PD-1 
treatment (Figure 3H-J).

 
Generation of gene subgroups based on PAGs associa-
ted DEGs

In order to further explore the potential molecular func-
tion of PAGs subgroups in CM, we developed a difference 

analysis to identify DEGs in 3 PAGs-based subgroups via 
“limma” R package. With the threshold set at P < 0.001, 
148 PAGs-associated DEGs were identified among the 3 
subgroups. KEGG enrichment analysis suggested that the 
DEGs were greatly enriched in antigen processing and 
presentation, epstein−Barr virus infection, and phagosome 
(Figure 4A). GO analysis indicated that lymphocyte-me-
diated immunity, antigen processing and presentation, and 
MHC protein complex were enriched, which is associated 
with immune response (Figure 4B). Consensus clustering 
was carried out to cluster the CM samples based on the 
DEGs, and 2 unsupervised classifications were calculated, 
with 331 samples in gene-cluster A and 337 samples in 
gene-cluster B. As shown in Figure 4C, the CM patients in 
gene-cluster A had better clinical outcomes than those in 
gene-cluster B (P < 0.001, Figure 4C). The PCA plot sug-
gested a clear distinction within the group among gene-
cluster A and B (Figure 4D). In addition, the expression 
level of DEGs and clinical features illustrated remarkable 
differences between the 2 gene-cluster subgroups (Figure 
4E). The result of PAGs in the 2 gene-cluster subgroups 
showed that the expression level of NLRP3, RIPK3, 
CASP1, CASP6, CASP8, PYCARD, TNFAIP3, RBCK1, 
and PSTPIP2 was higher in the gene-cluster B; however, 
the expression level of FADD was higher in gene-cluster 
A (Figure 4F). 

Construction of the PAGs signature
To further investigate the characteristic of PAGs in 

the development of CM, we conducted a LASSO model 
to identify the feature PAGs associated with DEGs to 
construct the PAGs signature for CM. According to the 
univariate Cox analysis, 110 PAGs associated DEGs were 
identified as prognostic factors for CM; moreover, LASSO 
analysis was utilized to determine the optimal lambda va-
lue of prognostic factors, 9 feature variates were obtained. 
The PAG score was established based on the expression 
level and coefficient of 6 prognostic factors which were 
calculated by multivariate Cox analysis. According to the 
6 prognostic factors, the CM samples were classified into 
training cohort (468 CM samples) and test cohort (200 CM 
samples) with the cutoff set at 7:3. In the PAGs cluster, a 
lower PAG score was observed in cluster C than cluster 

Figure 3. Characteristic of immunotherapy response in PAGs-based 
subgroups. (A, B) GSVA algorithm shows the KEGG signaling pa-
thways. (C-F) ESTIMATE score in 3 PAGs-based subgroups. (G) 
TIDE score. (H-J) IPS score shows the response to CTLA-4 and PD-1 
for CM.

Figure 4. Characteristic of gene subgroups based on PAGs associa-
ted with DEGs. (A) KEGG and (B) GO enrichment analysis of PAGs 
associated DEGs. (C) The Kaplan-Meier analysis of 2 unsupervised 
clustering. (D) PCA plot of 2 unsupervised gene-cluster for CM. (E) 
Characteristics of DEGs and clinical features in PAGs cluster and 
gene-cluster subgroups. (F) The expression level of PAGs in gene-
cluster A and B. 
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A and B (Figure 5A). As for gene cluster subgroups, the 
PAG score was also lower in cluster B than in cluster A 
(Figure 5B). These results suggested that the high PAG 
score was positively related to poor prognosis. The allu-
vial plot showed the relationship of CM between the PAG 
cluster, gene cluster, PAG score and survival status (Figure 
5C). As displayed in Figure 5D, the expression level of 6 
prognostic factors was markable higher in the low PAG 
score group than those in the high PAG score group. In 
the entire risk cohort, the CM samples were divided accor-
ding to the median PAG score (Figure 5E, F). The Kaplan-
Meier analysis suggested that the CM patients in the low 
PAG score group had better survival outcomes than the 
high PAG score (Figure 5G). In the training cohort and 
test cohort, we observed the same survival outcome of CM 
patients in the low PAG score group and high PAG score 
group. PCA diagram revealed that the PAG score could 
accurately classify the CM samples (Figure 5H). Moreo-
ver, the AUC of the PAG score was 0.700, showing a good 
diagnostic ability for CM (Figure 5I). 

Development of nomogram to predict prognosis for 
CM

The relationship between PAG score and clinical cha-
racteristics was determined via univariate/multivariate 
Cox analysis, and the results suggested that the PAG 
score was an independent factor for CM (univariate: HR = 
1.547 (1.398-1.713), P < 0.001; multivariate: HR = 1.549 
(1.399-1.714), P < 0.001, Figure 6A, B). The curve of the 
concordance index (C-index) showed that the C-index of 

the PAG score was greatly higher than age and gender, 
indicating a good predictability in estimating prognosis 
for CM (Figure 6C). According to the clinical features and 
PAG score, we established a nomogram to assess the sur-
vival probability of CM at 1-, 2-, and 3 years (Figure 6D). 
The time-dependent ROC curve showed that the AUC of 
1-, 2-, and 3 years was 0.700, 0.697, and 0.667, respecti-
vely (Figure 6E). Moreover, the calibration curve revealed 
a high consistency between the nomogram-predicted OS 
rate and the actual OS (Figure 6F). In the different clinical 
features, the survival outcome of CM with low PAG score 
and high PAG score was further evaluated and the result 
demonstrated that the CM in the low PAG score group had 
a better OS rate than those in the high score group among 
the age and gender (Figure 6G-J). 

The Characteristics of TME and TMB in PAG score 
subgroups

The relationship between PAG score and TME charac-
teristics was further explored. According to the GSVA ana-
lysis, a series of immune-related signaling pathways were 
markedly downregulated in the high PAG score group, in-
volving primary immunodeficiency, chemokine signaling 
pathway, natural killer cell-mediated cytotoxicity, and toll-
like receptor signaling pathway (Figure 7A). Immune and 
stromal status analysis revealed that the CM patients in the 
low PAG score group had higher ESTIMATE, stromal, and 
immune scores, and lower tumor purity than those in the 
high PAG score group (Figure 7B-E). Immune infiltration 
assessment results suggested that the low PAG score group 
had higher immune status than the high PAG score group, 
such as activated B cell, CD4 + T cell, CD8 + T cell, NK 
T cell, NK cell, and eosinophil (Figure 7F). Additionally, 
correlation analysis between the PAG score and immune 
infiltration suggested that the PAG score was negatively 
related to the immune status (Figure 7G). 

The characteristic of TMB in low- and high PAG score 

Figure 5. Construction of PAG signature of CM. (A) Distribution of 
PAG score in PAG clustering subgroups. (B) Difference analysis of 
PAG signature in gene-cluster subgroups. (C) The alluvial diagram 
shows the relationship between the PAG cluster, gene cluster, PAG 
score and survival status. (D) The expression level of 6 prognostic 
signature in low PAG score and high PAG score groups. (E, F) Clas-
sification of CM samples with low PAG and high PAG scores. (G) 
Survival curve of CM samples in two PAG score groups. (H) PCA 
plot shows two different classifications between the low PAG score 
and high PAG score groups. (I) ROC curve of PAG score for CM. The 
cutoff is 0.899. 

Figure 6. Development of nomogram and independence analysis. (A, 
B) Independence analysis of PAG score. (C) Concordance index of 
PAG score, age, and gender. (D) Nomogram development of PAG 
score and clinical features. (E) Time-dependent ROC curve at 1-, 
2-, and 3 years. (F) Calibration curve. (G-J) Survival curve of CM 
samples with low PAG score and high PAG score among age and gen-
der. 
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groups was further investigated. The somatic mutation 
results revealed that the CM patients with low PAG scores 
had higher somatic mutation frequency, such as TTN 
(74%), MUC16 (70%), BRAF (53%), DNAH5 (53%), and 
PCLO (46%) (Figure 7H, I). These results demonstrated a 
markable difference in immune infiltration characteristics 
between the two PAG score groups, which may correlate 
with response to immunotherapy for CM.

 
Relationship between PAG score, immunotherapy and 
drug sensitivity

We further explored the relationship between PAG score 
and immunotherapy response. IPS analysis suggested the 
CM patients in the low PAG score group were more sensi-
tive to the treatment of CTLA-4, PD-1 and CTLA-4/PD-1 
(Figure 8A-D). Meanwhile, the immune response result 
showed that the TIDE score of CM with a high PAG score 
was significantly lower than those with a low PAG score, 
indicating a better response to immunotherapy for the high 
PAG score group (Figure 8E). The expression level of ICP 
indicated that most of the ICPs were markedly lower in the 
high PAG score group, which may explain the difference 
of immunotherapy for CM (Figure 8F). The correlation 
between PAG score and drug sensitivity was explored to 
select potential therapeutic drugs for CM. The results of 
IC50 distribution suggested that the high PAG score group 
had higher IC50 of rapamycin, paclitaxel, sunitinib, ima-
tinib, cyclopamine, crizotinib, dasatinib, and doxorubicin, 
indicating a better drug sensitivity for CM patients with 
high PAG score (Figure 8G-N). Collectively, our results 

demonstrated a marked difference in immunotherapy and 
drug treatment of CM in different PAG score groups, gi-
ving a fresh insight for the future treatment of CM.

Discussion

In this study, we performed a molecular subtype analy-
sis of CM based on PAGs.  After screening for molecular 
differentially expressed PAGs, we established a PAGs si-
gnature that could effectively predict the prognosis of CM 
patients. The result suggested a possible role of PANopto-
sis in CM.

Although there is a lot of evidences showing the role of 
PANoptosis in the development of tumors, there is no clear 
study pointing to a drug mainly used by PANoptosis for 
the treatment of cancer (15). However, PANoptosis is in-
volved in the therapeutic processes of many drugs. IFN-γ 
and TNF-α were reported to induce the death of various 
tumor cells including CM by PANoptosis (16). The role of 
many key factors of PANoptosis cannot be ignored either, 
such as ZBP1 and IRF1. In the mouse model, the combina-
tion of interferons and nuclear export inhibitors produced 
ZBP1-dependent PANoptosis that inhibited CM tumo-
rigenesis (23). Hypermethylation of the ZBP1 promoter 
in breast cancer cells led to the downregulation of ZBP1 
expression and increased proliferation and migration of 
cancer cells (24). These evidences suggest the antitumor 
activity of ZBP1. However, ZBP1 expression levels were 
also reported to be positively correlated with tumor ag-
gressiveness (25). The heterogeneity among different tu-
mors and the complexity of the functions of key factors of 
programmed cell death require careful selection of thera-

Figure 7. The relationship of PAG score and TME characteristic. (A) 
GSVA shows the KEGG pathways between low PAG score and high 
PSG score groups. (B-E) ESTIMATE, immune, stromal scores and 
tumor purity. (F) Immune infiltration assessment of 23 immune cells. 
(G) Correlation analysis of PAG score and TME characteristic. (H, 
I) Somatic mutation landscape in low- and high-PAG score groups.

Figure 8. Analysis of immunotherapy response and drug sensitivi-
ty. (A-D) Relationship between PAG score and IPS score. (E) TIDE 
score. (F) Expression data of ICPs in low- and high PAG score groups. 
(G-N) Drug sensitivity analysis.  
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peutic targets. Furthermore, in gastric cancer, the PANop-
tosis pattern feature predicted gastric cancer survival and 
immunotherapy response (26). In CM, the key regulatory 
factor IRF1 of PANoptosis can be used as a biomarker to 
predict response to treatment with programmed cell death 
1 (PD-1) axial ICI (27). In view of the great success of 
ICIs in CM treatment, the prediction of therapeutic effect 
of ICI by PANoptosis and even the induction of PANopto-
sis features in CM patients to cope with ICI treatment have 
potential theoretical basis.

Among the eight prognostic factors screened for the es-
tablishment of prognostic models, NAGK is an important 
member of the tumor-related metabolic reprogramming 
process. It influences tumor growth by participating in 
the phosphorylation of N-acetylglucosamine (28, 29). In 
addition, recent studies have shown that NAGK is essen-
tial for the activation of the host innate immune system 
by phosphorylating muramyl dipeptide so that it can be 
recognized (30). This suggests the role of NAGK in tumor 
immunity. The mentioned NAGK substrate, muramyl di-
peptide, has been shown to act with other chemotherapy 
agents to inhibit tumor growth and metastasis, suggesting 
the possibility of NAGK as a therapeutic target (31, 32). 
The role of FBXO6 in tumors has also been incomprehen-
sively reported. FBXO6 targets DNA damage checkpoint 
kinase CHK1 in order to destroy stagnant cells during the 
S phase and play a role in chemotherapy resistance (33). In 
ovarian cancer cells, depletion of FBXO6 promotes tumor 
proliferation, migration, and invasion (34). FBXO6 inhi-
bits the progression of colorectal and gastric cancers by 
inducing RIOK1 ubiquitination (35). Our results suggest 
the tumor suppressive effect of FBXO6 in CM patients, 
which is in line with the effect in other cancer types.

Upregulation of CST7 expression is considered to be a 
marker of acute inflammation (36). The poor prognosis of 
CM patients with low CST7 expression levels may be rela-
ted to low immune response levels. The role of PSME1 in 
modulating immune response has been extensively studied 
(37). In addition, the downregulation of PSME1 induced 
proteasome remodeling (38). Since proteasome expression 
is associated with better prognosis and response to check-
point therapy in CM, further investigation of the associa-
tion between lower PSME1 level and poorer prognosis in 
CM has positive clinical significance (39). USP3 plays a 
role in retarding tumor growth by reducing cdc25A protein 
levels through depletion and causing a significant delay in 
cell cycle progression (40). The role of RTN1 in tumors 
has not been reported.

The GO pathway enrichment analysis of PAGs showed 
that the lymphocyte-mediated immunity was the most 
significant difference in biological processes, suggesting 
the role of PAGs in tumor-related immune processes. The 
interaction between immune cells and tumors in TMEs 
plays a crucial role in tumor proliferation, immune escape 
and the development of drug resistance(41). We observed 
lower levels of infiltration of various immune components 
in TME in CM patients with poor prognosis. Not only B 
cells, CD4+ T cells, CD8+ T cells and other components 
promoting anti-tumor immunity, but also the proportion 
of components inducing immunosuppression such as re-
gulatory T cells and MDSC also decreased(42). There is 
evidence that reduced disease progression and overall sur-
vival in melanoma patients can be attributed to the higher 
number and function of Tregs and MDSCs (43, 44). In 

addition to immune system failure in patients with high 
PAG scores, the observed reduction of various immune 
components may also be due to the suppression of mul-
tiple components of the immune system by screened PAG. 
The exact cause needs further evidence.

There are shortcomings in our research. The lack of in 
vitro and in vivo validation makes the results lack multi-
center validation. In addition, the specific mechanism of 
the difference in prognosis has not been thoroughly stu-
died. Further study on the role of selected targets in CM 
will deepen our understanding of the role of PANoptosis 
in tumorigenesis.
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