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Introduction

The lung, an important organ that is often damaged 
by tumors, pathogens, and other environmental particles, 
contains a large number of innate immune cells (1). Lungs 
contain mucus and are constantly exposed to environmen-
tal and autologous stimuli, and are a place with a high oc-
currence of primary and metastatic tumors (2). Therefore, 
to maintain pulmonary homeostasis, a rapid and effective 
immune response is required to prevent tumorigenesis 
and pathogen invasion (3). The lung of a healthy human 
contains a unique and active bacterial community, which 
is characterized by the movement of non-sterile air in two 
directions and mucus in the inlet and outlet of the airways 
(4). Lung disease is caused by a change in the lung envi-
ronment.

Cancer is a genetic disease and non-communicable that 
occurs due to a change in the division and death program 
of cells (5,6). Cancer is a disease in which cells grow out 
of control. The main cause of cancer-related deaths world-
wide is lung cancer, which accounts for 18.4% of death 
(7). Lung cancer is one of the most important cancers in 

human societies, which is very important due to its high 
prevalence and social and economic effects. Lung cancer 
is common in industrialized countries (due to the presence 
of contaminants) (8,9). According to the origin of the cell 
that has undergone transformation and cancer, there are 
different types of lung cancer including small-cell lung 
cancer (SCLC(, and non-small-cell lung cancer (NSCLC( 
(10), which are characterized by mutations and phenotypic 
appearance and often show varying degrees of heteroge-
neity, aggressiveness, and response/resistance to treatment 
(11). The disease is initially asymptomatic and is usually 
diagnosed in advanced stages (12). Non-small cell lung 
cancer (NSCLC) is the most common type of lung can-
cer and is usually treated with surgery or chemotherapy in 
the early stages (13). Lung cancer occurs with the gradual 
increase of genetic and epigenetic changes (14,15). The 
main cause of lung cancer is tobacco smoke (16).

A powerful method that combines data from related 
but separate studies to obtain results with higher statistical 
power and precision is a meta-analysis (17,18). Conside-
ring that lung cancer treatment methods currently do not 
cure most lung cancer patients and invasive diagnostic 
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methods (for example, through biopsy and bronchoscopy) 
often cause pain to patients, meta-analysis can help in fin-
ding biomarkers for early detection of this type of cancer. 
meta-analysis is not only a statistical method but also an 
advanced and almost complete description of the entire 
data (19). It increases statistical precision and accuracy 
and results in the production of a highly accurate assess-
ment of the expression of differentially expressed genes 
(19). Identifying and understanding the characteristics that 
contribute to the growth of cancer is achieved by analy-
zing the gene expression profiles and classifying the type 
of cancer. The analysis of microarray of cancer data will 
help to create better insights about cancer, plan for taking 
decisive action, and improve the cancer diagnosis method 
(20). In this study, we compare gene expression profiles in 
healthy individuals and people with lung cancer.

Materials and Methods

Preparation of raw data of microarray 
There is a valuable resource of publicly available 

gene expression data that can be integrated and analyzed 
to derive new hypotheses and knowledge. One of these 
sources is the Gene Expression Omnibus database (GEO). 
The Gene Expression Omnibus is deposited at the Natio-
nal Center for Biotechnology Information (NCBI) data-
base and makes available high-throughput data from the 
scientific community (21). Two gene expression profiles, 
GSE10072 and GSE19804, including non-tumor and 
tumor tissue samples, were downloaded from the GEO 
database. In the dataset of GSE10072, gene expression 
was investigated using Affymetrix HG-U133A arrays on 
135 fresh-frozen adenocarcinoma and paired uninvolved 
lung tissue samples from current, former, and never smo-
kers. Normalization was performed on the remaining 135 
microarrays. After normalizing, 13 samples were left out 
because there is a low percentage of tumor cells in the 
tumor tissues. This study included 122 samples, of which 
15 replicates were identified, resulting in 107 expression 
values from 58 tumor, 49 non-tumor tissues, 20 never-
smokers, 26 former smokers, and 28 current smokers. In 
dataset, GSE19804, [HG-U133_Plus_2] Affymetrix array 
was used and RNA was extracted from paired tumor and 
normal tissues for gene expression analysis in general. 
This dataset included 120 samples.

Pre-processing of microarray data
Data preprocessing is the first important step in mi-

croarray data analysis. Depending on the biological cha-
racteristics of the data, the best method should be used 
among different methods (22). Using the Limma package 
in the R software, the quality was checked using the prin-
ciple component analysis method (PCA) and then nor-
malization was done. principle component analysis is an 
important and common method in dimension reduction, 
visualization, and identifying the main variable in total 
data (22,23).

Meta-analysis of gene expression profiles
Meta-analysis was performed using sva (24) and limma 

(25) packages of R statistical software (http://www.r-pro-
ject.org/). Two datasets from two different platforms were 
normalized and integrated. We used the ComBat method 
(26) implemented in the sva package to batch-adjust the 
gene expression data of the merged dataset. The ComBat 
method merges the information from several genes with 
similar expression distributions in each dataset to estimate 
the average and variance in each of those genes (27). Dif-
ferentially expressed genes were identified between non-
tumor and tumor tissue samples based on |Fold Change| > 
1 and p-Value < 0.05.

Gene ontology and biological pathway analysis of diffe-
rentially expressed genes

Enrichr) http://amp.pharm.mssm.edu/Enrichr( is an 
online server that provides enrichment analysis using a 
list of genes (28). Enrichr includes large and varied gene 
libraries for analysis and loading. Gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
were analyzed using the Enrichr database. The GO pro-
ject describes gene products in every living organism (29). 
KEGG provides a repository of genomic, chemical, and 
systemic activity data (30). The criteria for identifying 
functional processes and biological pathways were based 
on p-Value < 0.05.

Protein-protein interaction network of differentially 
expressed genes

The protein-protein interaction network was drawn 
using the String web tool) version 11.5(, and then the 
network was entered into Cytoscape software (version 
3.9.1) for visualization and analysis. The String software 
enables physical and functional correlation by evaluating 
and establishing protein-protein interactions (31). The 
interaction score of 0.15 in String software was conside-
red. Cytoscape is software for interacting biomolecular 
networks using expression data (32). Hub genes using the 
CytoNCA plugin were identified based on degree centra-
lity, betweenness centrality, and closeness centrality.

Results

Microarray data used and normalization before of me-
ta-analysis

We downloaded the datasets with accession num-
bers GSE10072 and GSE19804 from the GEO database. 
Samples from 58 tumors and 49 non-tumor tissues in the 
GSE10072 database and 60 tumors and 60 non-tumor tis-
sues in the GSE19804 database were used for meta-analy-
sis in this study, which is shown in Table 1. Data norma-
lization is an important issue in research work, whether 
targeted or untargeted. Without normalization of microar-
ray data, the data can become erroneous and suboptimal, 
which leads to misleading and confusing results. The box 
plot of the data before and after normalization, as well as 

GEO accession no. Samples Platform
GSE10072 58 tumor and 49 non-tumor tissues [HG-U133A] Affymetrix
GSE19804 60 tumor and 60 non-tumor tissues [HG-U133_Plus_2]Affymetrix

Table 1. A summary of the characteristics of the raw data used in the meta-analysis.
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increased cell proliferation, invasion, and cell migration in 
an abnormal manner, they cause lung cancer.

Protein-protein interaction network of differentially 
expressed genes

Using the different expression genes obtained from 
meta-analysis between tumor tissue and healthy tissue, the 
protein-protein interaction network was drawn with the 
help of the String online database and Cytoscape software 
(Figure 2). Then, six key genes) IL6, MMP9, VWF, PE-
CAM1, FOS, CAV1) of the important and effective in lung 
cancer were identified based on grade. Among these genes, 
IL6 gen has the greatest impact on lung cancer (Table 4). 
It is shown in Figure 1, the content of the experimental 
groups and the trend of the three groups also decreased 
with time, but the difference between SNL and GBP was 
not very large and statistically insignificant.

Discussion

Cancer stem cells are the cancer cells that can recons-
truct and differentiate (34) Abnormal proliferation and mi-
gration of cancer cells are caused by numerous processes 
and signalling pathways that converge in the nucleus to 
reprogram the cellular transcriptome (35). In general, 
genes responsible for cell proliferation and migration have 
abnormal activity and more in lung cancer cells in com-
parison with normal cells (35). Uncontrolled proliferation 
and migration are common in lung cancer cells and are 
known for this characteristic (35). In lung cancer, the nor-
mal epithelial cells gain the ability to multiply and migrate 
to invade the lung, which causes cancer to progress. For 
new lung cancer treatments, the use of inhibitors that af-
fect the epidermal growth factor receptor can be an effec-
tive way(36). Nuclear factor erythroid 2-related factor 2 
(Nrf2), plays the important role in the control mechanisms 
of the cellular defense response, regulation of the antioxi-
dant system, and regulation of endogenous antioxidants 
and phase II detoxification enzymes and transporters, if 
it is restrained, prevents the development of lung cancer. 
(37). In a healthy person, cells grow and die, but in cancer, 
we face abnormal growth of some cells (38). Some factors, 
including internal and environmental factors, cause cancer 
by causing continuous cell growth and changing the gene-
tic structure of cells (39). Among the internal factors of 
abnormal cell growth and environmental factors, tobacco 
smoke and ultraviolet rays can be mentioned in causing 

the PCA diagram after normalization, was drawn is shown 
in Figure 1.

Identification of differentially expressed genes using 
meta-analysis

Meta-analysis is the analysis of related but independent 
data for a quantitative assessment of the studied phenome-
non (33). The DEGs between the non-tumor and tumor tis-
sue samples were identified using the meta-analysis. The 
screening thresholds for differentially expressed genes 
were set at |Fold Change| > 1 and p-Value < 0.05. Based 
on the aforementioned screening thresholds, among the 
515 differentially expressed genes, 167 up- and 348 down-
regulated were identified.

Gene ontology and biological pathway analysis of diffe-
rentially expressed genes

After finding differentially expressed genes using the 
meta-analysis, these genes were used for the input of the 
Enrichr online server. The functional processes using the 
genes obtained from the meta-analysis showed, there were 
a total of 685 functional processes with p-Value ≤ 0.05. In 
our research, functional processes related to lung cancer 
are listed in Table 2 the important processes in lung cancer 
are positive regulation of cell differentiation, regulation of 
cell population proliferation, regulation of epithelial cell 
differentiation, positive regulation of epithelial cell proli-
feration, response to growth factor, defense response to the 
tumor cell, cellular response to UV, regulation of cell cycle 
process.

The biological pathway using the genes obtained from 
the meta-analysis showed, there were a total of 43 biologi-
cal pathways with a p-Value ≤ 0.05. In our research, biolo-
gical pathways related to lung cancer are listed in Table 3. 
The important pathways in lung cancer are cell adhesion 
molecules, PPAR signaling pathway, TNF signaling pa-
thway, ECM-receptor interaction, p53 signaling pathway, 
PI3K-Akt signaling pathway, and Cell cycle.

Our results showed that if the functional processes 
and biological pathways mentioned in this research are 
changed for any reason in healthy lung tissue and lead to 

Figure 2. The PPI interaction network was constructed from 515 dif-
ferentially expressed genes (DEG), the blue colour shows genes with 
low expression and the red colour shows genes with high expression. 
The size of nodes is based on the degree.

Figure 1. Microarray data before (A), after normalization (B), and 
PCA diagram after normalization (C).
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Category Gene Set Description p-Value Gene

BP GO:0071560 cellular response to transforming growth factor beta 
stimulus 1.84E-08 ACVRL1,GDF10,HPGD,PDE2A,FOS,LRRC32,TGFBR2,TGFBR3,CDH5,CLDN5,CLEC3B,COL3A

1,COL1A2,HYAL2,ID1,SOX9,FERMT2

BP GO:0048523 negative regulation of cellular process 8.40E-08

SEMA5A,ACVRL1,ADAMDEC1,HPGD,GMNN,FHL1,WFDC1,FOXM1,CLU,SOX17,MDK,ADA
MTS1,HYAL1,CAMK2N1,PODXL,HYAL2,AGR2,SLIT2,ADAMTS8,CD34,JAM2,CCL23,ANGPT
1,WFS1,IGFBP3,MIF,KLF4,CBFA2T3,NME1,TGFBR3,SFRP4,BMP2,IL6,CLDN3,RGCC,AGTR2,

CRYAB,FERMT2,TNFRSF21,CDKN3

BP GO:0045597 positive regulation of cell differentiation 2.90E-07 ACVRL1,CSF3,IGFBP3,ZBTB16,ADIRF,LPL,TGFBR2,COL1A1,TMEM100,ZFP36,PCP4,BMP2,I
L6,RGCC,RRAS,MDK,AGTR1,SOX9,CD36,ECT2,CD34,HOXA5,FERMT2,EZH2

BP GO:0008284 positive regulation of cell population proliferation 5.70E-07
CCL14,SLC35F6,CSF3,VIPR1,PLA2G1B,C5AR1,KIF14,TTK,FOXM1,AQP1,GRK5,EPCAM,MDK
,HYAL1,CXCR2,TIMP1,SOX9,KRT6A,EDN1,EMP2,MIF,TBX3,NME1,TGFBR2,GREM1,TGFBR3

,CLDN5,BMP2,IL6,MEIS1,PRC1,GAS6,IL7R,EZH2

BP GO:0007179 transforming growth factor beta receptor signaling 
pathway 1.11E-06 ACVRL1,GDF10,HPGD,FOS,LRRC32,TGFBR2,TGFBR3,CDH5,CLDN5,COL3A1,COL1A2,ID1,F

ERMT2

BP GO:0010604 positive regulation of macromolecule metabolic 
process 1.40E-06

RAMP2,RAMP3,CLU,CDH5,CDH3,HEY1,CAMK2N1,LAMP3,AGR2,SOX9,CD36,CD34,HOXA5
,EGR1,IL33,ANGPT1,WFS1,PDE2A,KLF4,SELE,KLF2,GREM1,CLDN5,SFRP4,BMP2,IL6,CLDN

3,RGCC,GAS6

BP GO:0051240 positive regulation of multicellular organismal process 1.64E-06 EPAS1,ADRB2,PLAC8,GHR,ACADL,MDK,ZBED2,LEPR,SOX9,CD36,IL33,CAV1,ZBTB16,MIF,
TGFBR2,COL1A1,FGR,BMP2,IL6,FABP4,RGCC,FABP5,MFAP2,LCN2,GAS6,FERMT2,EZH2

BP GO:0007178 transmembrane receptor protein serine/threonine 
kinase signaling pathway 4.80E-06 ACVRL1,GDF10,HPGD,FOS,LRRC32,TGFBR2,TMEM100,TGFBR3,CDH5,CLDN5,BMP2,COL3

A1,COL1A2,ID1,FERMT2

BP GO:0071345 cellular response to cytokine stimulus 6.26E-06
CCL14,CSF3,CEBPD,STK39,AQP4,PTGS2,CXCL2,SOCS2,GHR,DUOX1,ZFP36,HYAL1,HYAL2,
LEPR,S1PR1,TIMP1,SOX9,CD36,EGR1,CCL23,MME,MMP1,PDE2A,FOS,MMP9,IL6,COL1A2,L

CN2,MNDA,GAS6,TNFRSF21,IL18R1

BP GO:0048522 positive regulation of cellular process 6.74E-06
CCL14,SLC35F6,CSF3,VIPR1,RAMP3,PLA2G1B,KIF14,HBB,TTK,FOXM1,ZFP36,CDH3,GRK5
,EPCAM,MDK,HYAL1,CXCR2,TIMP1,SOX9,CD36,KRT6A,EDN1,CAV1,SFTPD,EMP2,HBA1,T

BX3,TGFBR2,GREM1,CLDN5,IL6,MEIS1,PRC1,FKBP1B,GAS6,IL7R,S100A8,EZH2

BP GO:0043410 positive regulation of MAPK cascade 1.00E-05 CCL14,EDN1,CCL23,NDRG4,GPR37,RAMP3,ANGPT1,CAV2,C5AR1,MIF,ADRB2,AGER,MARC
O,BMP2,IL6,S100A12,CD36,TEK,CD24,GAS6,FERMT2,EZH2

BP GO:0071310 cellular response to organic substance 4.10E-05 ACVRL1,CSF3,RAMP2,RAMP3,MME,SLC1A1,KLF4,TGFBR2,SOCS2,GHR,CLEC3B,SLIT2,IL1
8R1

BP GO:0042127 regulation of cell population proliferation 5.43E-05

CCL14,ACVRL1,SLC35F6,CSF3,VIPR1,PLA2G1B,KIF14,TTK,FOXM1,CLU,GRK5,EPCAM,AD
AMTS1,CAMK2N1,CXCR2,TIMP1,SOX9,ADAMTS8,KRT6A,CCL23,EDN1,IGFBP3,EMP2,KLF4
,CBFA2T3,TBX3,NME1,TGFBR2,GREM1,CLDN5,SFRP4,BMP2,IL6,MEIS1,CLDN3,RGCC,PRC1

,AGTR1,IL7R,EZH2,CDKN3

BP GO:0071635 negative regulation of transforming growth factor beta 
production 1.11E-04 LAPTM4B,CDH3,GATA6,CD24

BP GO:0030856 regulation of epithelial cell differentiation 1.41E-04 CAV1,MAFF,SOX9,CD24,APOLD1

Table 2. Functional processes associated with DEGs associated with lung cancer in human.
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BP GO:0071363 cellular response to growth factor stimulus 1.45E-04 ACVRL1,RAMP2,EGR3,PDE2A,NDNF,KLF4,TGFBR2,TMEM100,ZFP36,BMP2,CLEC3B,HYAL1
,HYAL2,SOX9

BP GO:0071492 cellular response to UV-A 1.70E-04 MME,MMP1,TIMP1,MMP9

BP GO:0045596 negative regulation of cell differentiation 3.21E-04 GDF10,CAV1,ZBTB16,CRIM1,TBX3,GREM1,IL6,MEIS1,EFEMP1,COL5A1,HEY1,COL5A2,SOS
TDC1,SOX9,FERMT2

BP GO:0010224 response to UV-B 3.53E-04 MFAP4,MME,HYAL1,HYAL2

BP GO:0008285 negative regulation of cell population proliferation 4.52E-04 ACVRL1,CCL23,NDRG4,IGFBP3,GATA6,KLF4,CBFA2T3,TBX3,NME1,GREM1,TGFBR3,SFRP4,
BMP2,IL6,CLDN3,RGCC,FAP,CAMK2N1,ADAMTS1,OGN,SOX9,ADAMTS8,CDKN3

BP GO:0070141 response to UV-A 4.83E-04 MME,MMP1,TIMP1,MMP9
BP GO:0050679 positive regulation of epithelial cell proliferation 6.75E-04 SEMA5A,MMP12,BMP2,CDH3,EGR3,HYAL1,MDK,C5AR1,SOX9,TEK,NME1
BP GO:0050678 regulation of epithelial cell proliferation 0.001169 ACVRL1,TGFBR3,ZFP36,ANGPT1,HYAL1,TIE1,C5AR1,SOX9,NME1
BP GO:0034644 cellular response to UV 0.001372 MFAP4,MME,HYAL1,MMP1,HYAL2,TIMP1,MMP9,AQP1

BP GO:0090288 negative regulation of cellular response to growth 
factor stimulus 0.001757 GREM1,BMP2,MMRN2,CRIM1,SOSTDC1,AGTR2,SLIT2,SULF1

BP GO:0030858 positive regulation of epithelial cell differentiation 0.002048 TMEM100,SFRP4,SFN,SOX9
BP GO:0090068 positive regulation of cell cycle process 0.002086 CCNB1,EDN1,RGCC,NUSAP1,KIF14,ECT2,NDC80,E2F8,MAD2L1
BP GO:0045926 negative regulation of growth 0.002855 ACVRL1,SOX17,HYAL1,HYAL2,MT1M,FHL1,TMPRSS4,WFDC1,AGTR2,SLIT2

BP GO:0071636 positive regulation of transforming growth factor beta 
production 0.00303 GATA6,PTGS2,CD34

BP GO:2000045 regulation of G1/S transition of mitotic cell cycle 0.003641 RGCC,ADAMTS1,HYAL1,FHL1,FAM107A,KIF14,KLF4
BP GO:0061448 connective tissue development 0.003925 HYAL1,HYAL2,ZBTB16,SOX9,SULF1
BP GO:0050680 negative regulation of epithelial cell proliferation 0.003938 TGFBR3,RGCC,CAV2,CAV1,PTPRM,SOX9,SULF1
BP GO:1900745 positive regulation of p38MAPK cascade 0.004112 BMP2,GADD45B,AGER,SASH1

BP GO:0051726 regulation of cell cycle 0.004214 PPP1R15A,GADD45B,HPGD,GMNN,GATA6,MIF,FOXM1,TBX3,CCNB1,BMP2,RGCC,FAP,GRK
5,CAMK2N1,SOX9,DLGAP5,CDKN3

BP GO:0045604 regulation of epidermal cell differentiation 0.004789 SFRP4,ZFP36,MAFF,SFN
BP GO:0070167 regulation of biomineral tissue development 0.005536 HEY1,S1PR1,SOX9,GAS6
BP GO:0051093 negative regulation of developmental process 0.005709 GREM1,BMP2,HEY1,SOX9,MIF,FOXM1,GAS6
BP GO:0043408 regulation of MAPK cascade 0.0071 GREM1,TGFBR3,BMP2,IL6,GPR37,RRAS,CAV2,CAV1,ADRB2,TEK,CD24
BP GO:0014855 striated muscle cell proliferation 0.007373 TGFBR3,NDRG4
BP GO:0046621 negative regulation of organ growth 0.007373 WWC2,SLC6A4
BP GO:0001558 regulation of cell growth 0.00895 ACVRL1,SOX17,HYAL1,HYAL2,FHL1,SEMA3G,WFDC1,AGTR2,SLIT2

BP GO:0090287 regulation of cellular response to growth factor 
stimulus 0.011026 SFRP4,SLIT2,SULF1

BP GO:0071634 regulation of transforming growth factor beta 
production 0.012961 LRRC32,PTGS2,CD34

BP GO:1901388 regulation of transforming growth factor beta 
activation 0.014918 GATA6,LRRC32
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BP GO:0032908 regulation of transforming growth factor beta1 
production 0.014918 LAPTM4B,GATA6

BP GO:0032909 regulation of transforming growth factor beta2 
production 0.014918 CDH3,GATA6

BP GO:0043567 regulation of insulin-like growth factor receptor 
signaling pathway 0.015077 BMP2,CDH3,IGFBP3

BP GO:1902808 positive regulation of cell cycle G1/S phase transition 0.015923 RGCC,ADAMTS1,HYAL1,EZH2
BP GO:1901990 regulation of mitotic cell cycle phase transition 0.016919 CDC20,TPX2,CCNB1,RGCC,UBE2C,CDK1,KIF14,BUB1B,NEK2,HMMR,MAD2L1
BP GO:1900744 regulation of p38MAPK cascade 0.01923 BMP2,GADD45B,AGER,SASH1
BP GO:0001938 positive regulation of endothelial cell proliferation 0.020686 SEMA5A,BMP2,EGR3,MDK,AGTR1,TEK
BP GO:0007517 muscle organ development 0.022777 SGCE,EGR3,FHL1,TCF21,SGCG
BP GO:0070848 response to growth factor 0.027037 ACVRL1,GATA6,KLF4,TGFBR2
BP GO:0030177 positive regulation of Wnt signaling pathway 0.028239 SEMA5A,COL1A1,SFRP4,SCEL,BMP2,CDH3,CAV1,GPC3,SULF1
BP GO:0010564 regulation of cell cycle process 0.029217 CAV2,PRC1,NEK2,SOX9,KIF20A,KIF11,ECT2
BP GO:0002357 defense response to tumor cell 0.030244 PRF1,KLF4
BP GO:0046620 regulation of organ growth 0.030244 WWC2,SLC6A4
BP GO:2000026 regulation of multicellular organismal development 0.042402 SOX17,CDK1,CD24
BP GO:0030178 negative regulation of Wnt signaling pathway 0.042626 GREM1,SFRP4,BMP2,SOX17,MDK,WIF1,CAV1,TPBG,SOSTDC1,SOX9
BP GO:0071378 cellular response to growth hormone stimulus 0.042758 GHR,SOCS2
BP GO:0043406 positive regulation of MAP kinase activity 0.043687 EDN1,S100A12,CD24,SASH1,EZH2

Table 3. Biological pathway associated with DEGs associated with lung cancer in human.

Databases description p-Value Gene

KEGG pathway Cell adhesion molecules 1.77E-05 ICAM2,PTPRM,SELE,SELP,CLDN22,CDH5,CLDN5,VCAN,CDH3,CLDN3,ITGA8,PECAM1,CLD
N18,CD34,JAM2

KEGG pathway AGE-RAGE signaling pathway in diabetic complications 2.27E-05 COL1A1,EGR1,THBD,IL6,EDN1,COL3A1,COL1A2,PLCB4,AGTR1,AGER,SELE,TGFBR2

KEGG pathway Transcriptional misregulation in cancer 2.95E-05 GADD45B,HPGD,IGFBP3,ZBTB16,LMO2,DEFA3,DEFA1,IGH,MMP9,TGFBR2,FUT8,IL6,MEIS1,
PLAU,TSPAN7,ERG,DEFA1B

KEGG pathway ECM-receptor interaction 1.71E-04 COMP,COL1A1,TNXB,COL1A2,VWF,ITGA8,SPP1,CD36,HMMR,THBS2
KEGG pathway TNF signaling pathway 0.001184905 IL6,EDN1,MAP3K8,FOS,CXCL3,PTGS2,SELE,CXCL2,MMP9,IL18R1
KEGG pathway Cell cycle: 0.00254059 CDC20,CCNB1,PTTG1,GADD45B,CDK1,BUB1B,SFN,TTK,MCM2,MAD2L1
KEGG pathway p53 signaling pathway 0.004253594 CCNB1,RRM2,GADD45B,SESN1,IGFBP3,CDK1,SFN
KEGG pathway PPAR signaling pathway 0.004587587 FABP4,ACADL,FABP5,MMP1,OLR1,LPL,CD36

KEGG pathway PI3K-Akt signaling pathway 0.022040115 CSF3,TNXB,VWF,ANGPT1,IGH,THBS2,GNG11,EFNA4,COL1A1,COMP,GHR,IL6,COL1A2,SPP1
,ITGA8,TEK,IL7R

KEGG pathway TGF-beta signaling pathway 0.048126704 GREM1,BMP2,ID1,ID4,ID3,TGFBR2
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cancer (40,41). Genetic or epigenetic changes in the main 
regulators of the cell cycle are related to the division of 
cancer cells(42).

Epithelial cell adhesion molecule is expressed in dif-
ferent types of human cancers, such as lung cancer (43). So 
it can be a way to treat this disease. PPARγ regulates tumor 
growth, cell proliferation, and cell invasion by inactiva-
ting different signaling pathways (44). TGF causes various 
diseases related to cancer and their progression (45,46). 
Previous studies have shown that TGF is involved in the 
malignancy, differentiation, and metastasis of tumors, 
such as NSCLC (47,48). The P53 path plays an important 
role in the cell cycle setting (49). By regulating transcrip-
tion, p53 acts as the most important tumor suppressor in 
human cancers (50,51). In various types of human tumors, 
PI3K/AKT has excessive activity (52). Based on previous 
studies, ECM receptor interaction plays a role in tumor 
invasion and metastasis (53,54). Previous findings have 
shown that PI3K/AKT is involved in invasion and migra-
tion in lung cancer cells (52). The cell cycle is related to 
the growth of cells, and it is regulated using various fac-
tors, pathways, and genes. Leaving this cycle out of the 
normal way causes cancer (55).

The first key gene in lung cancer is called interleukin 
6 (IL6), which has the highest degree. In our research, 
this gene is involved in functional processes and biologi-
cal pathways: negative regulation of the cellular process, 
positive regulation of cell differentiation, positive regula-
tion of cell population proliferation, positive regulation of 
macromolecule metabolic process, positive regulation of 
the multicellular organismal process, cellular response to 
cytokine stimulus, positive regulation of the cellular pro-
cess, positive regulation of MAPK cascade, regulation 
of cells population proliferation, negative regulation of 
cell differentiation, negative regulation of cell population 
proliferation, regulation of MAPK cascade, AGE-RAGE 
signaling pathway in diabetic complications, transcrip-
tional misregulation in cancer, TNF signaling pathway, 
and PI3K-Akt signaling pathway. The high level of IL-6 
in cancer tissue and serum indicates the progress of the 
disease and treatment and the poor survival of people with 
lung cancer (56,57). High levels of IL-6 cause damage as 
well as the progress of postoperative lung cancer disease.

Matrix metalloproteinase 9 (MMP9) is the second 
key gene related to lung cancer According to our results, 
this gene plays a potential role in these processes and 
pathways: cellular response to cytokine stimulus, cellular 
response to UV-A, response to UV-A, cellular response to 
UV, transcriptional misregulation in cancer, and TNF si-
gnaling pathway. Matrix metalloproteinases (MMP) cause 
damage to the extracellular matrix (ECM) and base mem-
brane (BM) and are involved in the invasion of cancer and 
metastasis. Diagnosis of SNP and enzyme activity among 

MMP9 and MMP13 can be a method for identifying non-
small cell lung cancer(58). The C allele of genetic poly-
morphism in the MMP-9 gene RS3918242 is a major risk 
factor in people with lung cancer(58). Previous findings 
showed that MMP-9 is expressed in healthy lung tissue, 
but its expression was higher in lung cancer tissue(59).

The third key gene in lung cancer is the von Willebrand 
factor (VWF). Our results indicated that ECM receptor 
interaction and PI3K-Akt signaling pathway are the pa-
thways, in which this gene is involved. Previous studies 
showed that VWF is involved in tumor cell proliferation 
and apoptosis, and the high expression level of this gene 
indicates cancer progression (60). VWF disables angioge-
nesis and causes lung adenocarcinoma growth, VWF sup-
plementation may be useful for treating this type of cancer 
(61). VWF is lowly expressed in lung cancer compared to 
healthy lung tissue (62).

The next key gene in lung cancer is Platelet And Endo-
thelial Cell Adhesion Molecule 1 (PECAM-1) Our results 
showed, this gene plays a role in cell adhesion molecules.
PECAM-1 expression has been identified in many tu-
mor cells, including lung cancer(63,64). The correlation 
between the expression of PECAM-1 in lung cancer and 
cell adhesion, proliferation, and migration has shown that 
this gene is involved in the development of cancer(65). 
PECAM1 in lung cancer has low expression compared to 
healthy lung tissue (66).

Another key gene in lung cancer is Fos Proto-Onco-
gene, AP-1 Transcription Factor Subunit (FOS). Based on 
our results, this gene plays a potential role in these pro-
cesses and pathways: cellular response to transforming 
growth factor beta stimulus, transforming growth factor 
beta receptor signaling pathway, transmembrane receptor 
protein serine/threonine kinase signaling pathway, cellu-
lar response to cytokine stimulus, TNF signaling pathway. 
Previous findings showed that FOS with its downregula-
tion can play a role in the pathogenesis of lung cancer(67). 
This gene is a transcription factor and can self-regulate 
(68). The expression of FOS in lung cancer is very low 
compared to healthy lung tissue(69,70).

And finally, the last key gene effective in lung cancer 
is Caveolin-1 (CAV1). According to our reviews, this gene 
plays role in the positive regulation of the multicellular 
organismal process, positive regulation of the cellular pro-
cess, regulation of epithelial cell differentiation, negative 
regulation of cell differentiation, negative regulation of 
epithelial cell proliferation, regulation of MAPK cascade, 
positive regulation of Wnt signaling pathway, negative re-
gulation of Wnt signaling pathway. Abnormal expression 
of Cav-1 is involved in the progression of lung cancer with 
abnormal proliferation, migration, and apoptosis(71). The 
expression of Cav-1 in lung cancer is very low compared 

Gene Gene Name Degree Closeness Betweenness
IL6 Interleukin 6 221.0 0.6536857 5681.051
MMP9 Matrix metalloproteinase 9 206.0 0.640327 3993.3298
VWF von Willebrand factor 198.0 0.6300268 5028.92
PECAM1 Platelet And Endothelial Cell Adhesion Molecule 1 180.0 0.6176084 2420.1301
FOS Fos Proto-Oncogene, AP-1 Transcription Factor Subunit 174.0 0.61277705 4044.7502
CAV1 Caveolin-1 173.0 0.61277705 4015.685

Table 4. Key genes related to lung cancer in humans.
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to healthy lung tissue(71). Epidermal growth factor recep-
tor (EGFR) is affected by Cav-1 in lung cancer (72).

Conclusions
We have identified differential expression of genes 

between the non-tumor and tumor tissue samples using 
meta-analysis. Also, among these genes, we identified 
genes that played a greater role in lung cancer, and we 
determined the processes and pathways in which these 
genes were involved, which can be used as markers for 
early detection of this type of cancer. Therefore, the identi-
fication of key genes obtained by comparing healthy indi-
viduals and cancer individuals leads us to the development 
of identification methods for the treatment of lung cancer.
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