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Introduction

Streptococcus pneumoniae is a globular Gram-positive 
bacterium, with α hemolytic characteristics (1). The rate 
of Streptococcus pneumoniae-carrying is high in healthy 
people, but it is usually a recessive infection (2). Strep-
tococcus pneumoniae is a pathogen causing community-
acquired infection in children. It can colonize the naso-
pharynx of children, which causes non-invasive infections 
such as sinusitis, bronchitis, and pneumonia as well as 
invasive infections (3). The morbidity and mortality of 
meningitis resulting from Streptococcus pneumoniae are 
high, and it has become a major cause of bacterial menin-
gitis in children < 5 years old (4). Penicillin is the drug 
of choice for the treatment of Streptococcus pneumoniae 
infection. However, Streptococcus pneumoniae has more 
than 50% clinical resistance to penicillin, with a minimum 
inhibitory concentration (MIC) ≥2μg/mL, while the insen-
sitivity rate is as high as 75% (5). Streptococcus pneumo-
niae can form a biofilm, which is one of the main factors 
leading to bacterial insensitivity to antibiotics (6). Besides, 
the biofilm of drug-susceptible Streptococcus pneumoniae 
is usually thicker than that of drug-resistant strains (7).

Programmed cell death protein 1 (PD-1) is a crucial 
immunosuppressive molecule in the body’s immune sys-

tem and belongs to the CD28 superfamily. The PD-1 tar-
get can be applied in the treatment of infection, tumors, 
and immune diseases (8). Programmed cell death ligand 
1 (PD-L1) is covered in the type I transmembrane protein. 
Inhibition of the PD-1/PD-L1 signaling pathway (SPW) 
helps promote the oligoclonal amplification of tumor-infil-
trating T cells in the body (9).PD-1 antibodies are treating 
various cancer diseases. Blocking the PD-1/PD-L1 SPW 
can improve immune cell function and survival rate (10). 
Infection of Streptococcus pneumoniae leads to the imba-
lance of immune cells in the body (11). Consequently, the 
PD-1 SPW is involved in the process of the anti-infec-
tious immune response, which is a therapeutic target for 
immune regulation.

To investigate the characteristics of drug resistance and 
biofilm formation of pneumococcal meningitis (PM) and 
the regulation of the PD-1/PD-L1 SPW, the strains isolated 
from PM patients were collected for the drug susceptibility 
test and biofilm determination. Subsequently, the model of 
PM mouse was constructed targeting at therapeutic effect 
of PD-1 antibody blocking the PD-1/PD-L1 SPW on PM 
mice. The results were hoped to clarify the mechanism of 
the PD-1/PD-L1 pathway in the specific anti-infection of 
Streptococcus pneumoniae and to provide new research 
ideas for preventing and treating PM.
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could inhibit the thickness of Streptococcus pneumoniae biofilm, while blocking the PD-1/PD-L1 pathway 
exerted an improving effect on the PM symptoms.
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Materials and Methods

Identification and preservation of Streptococcus pneu-
moniae strains

32 Streptococcus pneumoniae strains isolated from the 
cerebrospinal fluid (CSF) of patients with PM from the mi-
crobial laboratory of the First Affiliated Hospital of Xi'an 
Jiaotong University from April 2020 to January 2022 were 
collected as research strains. The standard bacterium for 
Streptococcus pneumoniae was ATCC49619. The strains 
were placed in a Columbia culture plate, and the condition 
was set at 35°C in an incubator containing 5% CO2. The 
colony status was observed after 24 hours of culture. The 
transparent colony with umbilical concave was selected 
for the bile dissolution and identification through the Opt-
pchin paper method. The dissolved colony with the bacte-
riostatic ring over 14mm was identified as Streptococcus 
pneumoniae.

The drug susceptibility test of Streptococcus pneumo-
niae

The drug susceptibility test for bacteria was imple-
mented by using the automated bacterial drug susceptibi-
lity analyzer combined with disk diffusion and E test. The 
disk diffusion method was adopted to test the resistance 
to erythromycin, clindamycin, vancomycin, linezolid, tri-
methoprim-sulfamethoxazole, and levofloxacin. The E test 
was adopted for the resistance to penicillin. Drug suscepti-
bility was evaluated according to the standards established 
by the American Clinical and Laboratory Standards Ins-
titute (CLSI). The standard of meningitis was used as the 
criterion for judging the strain isolated from CSF.

Biofilm semi-quantitative determination of Streptococ-
cus pneumoniae

The MIC of penicillin against Streptococcus pneu-
moniae was determined by the agar dilution method. The 
MIC was divided into 0.05μg/mL, 0.1μg/mL, 0.5μg/mL, 
1μg/mL, and 5μg/mL according to the CLSI standard.

Streptococcus pneumoniae was inoculated on the plate 
of Colombian, and the culture condition was set at 35°C in 
an incubator containing 5% CO2. 24 hours later, the colo-
ny status was observed. The colony growing on the plate 
was transferred to a sterile test tube containing the Todd 
Hewitt Broth (THB) culture medium by using the inocu-
lation ring. The McFarland concentration was adjusted to 
0.5 by the turbidity comparator. 200 μL of the bacterial 
solution was inoculated into the 96-well plates, and it was 
cultured in the incubator for 24 h. The colony was washed 
with phosphate buffer (PBS) 3 times and placed in a 60°C 
drying box for 1h. 1% crystal violet solution was used to 
stain for 15min, and the floating color was washed with 
PBS, with a 15-minute dry. The A value in each well was 
detected at 570nm. The biological semi-quantitative deter-
mination of bacterial strains was performed with the pure 
THB culture medium as the blank control group.

Establishment of the model of PM mice
The mice were anesthetized by intraperitoneal injec-

tion of 0.4 mL 1.8% tribromoethanol anesthetics. After 
weighing, the mice were fixed in the prone position on the 
operating table. Hair was removed along with the mouse 
head, and a 1.5 cm incision was made in the midline 
sagittal position. The injection point was taken from the 

midpoint of the posterior connection of the bilateral eye 
sockets and ears. 15μL Streptococcus pneumoniae with a 
concentration of 1.5×108cfu/mL was injected slowly and 
evenly through the skull with a microsyringe, which was 
perpendicular to the plane of the cranial parietal bone. 
The needle was retained for 1min, and it was slowly wit-
hdrawn. Then, the incision was sutured, and the mark 
was made. The mice were reared in cages at 22±2°C and 
placed in the 12 h / 12 h day-and-night-alternating animal 
laboratory, with a free diet.

The weights of mice were recorded at 3 h, 6 h, 12 h, 
and 24 h after the inoculation. The Loeffler Neurobeha-
vioral scale was adopted to assess mouse behaviors. 0 
points represented death, 1 point represented the inability 
to exercise normally, 2 points represented the inability to 
turn over normally, 3 points represented the turning time 
over 5 s, and 4 points represented the inability to turn over 
within 5 s, with the reduction of the autonomic movement 
times, and 5 points represented the ability to turn over wit-
hin 5 s and move normally.

Grouping of experimental animals
60 BALB/c mice were selected as the subjects. Accor-

ding to the treatment methods, mice were randomly rol-
led into the normal control (NC) group, sham operation 
(Sham) group, PM group, and PD-1 antibody (PM + PD-1 
Ab) group, with 15 mice in each group. Mice in the NC 
group were fed normally and underwent any operative 
treatment. Mice in the Sham group were subjected to the 
methods given in section 2.5 and were injected slowly 
with a microsyringe for 3mm before injection. In the PM 
group, the models of mice were constructed according to 
the 2.5-section method. In the PM + PD-1 Ab group, the 
models of mice were established according to the 2.5-sec-
tion method. After the successful modeling, 100μL 10mg/
mL PD-1 antibody was intraperitoneally injected once 
every 3 days for 4 times.

HE staining of brain histopathological changes
After anesthesia, the mice in each group were decapi-

tated to take the brain tissue. After it was frozen at -80°C, 
the tissue was rinsed with isotonic saline and infused with 
a mixed solution containing 2% paraformaldehyde and 
2% polyglutaraldehyde. Then, it was fixed overnight at 
4°C and rinsed with PBS. After the tissue was treated by 
gradient dehydration with 70%, 80%, 95%, 95%, 100%, 
and 100% ethanol solution, the xylene solution was added 
for tissue transparency. The tissue was embedded in the 
paraffin solution for 30min and sectioned into slices with a 
thickness of 4μm. After the slices were baked in the drying 
box, the rehydration of tissue was implemented with the 
xylene and the 100%, 100%, 90%, 80%, and 70% ethanol 
solutions. It was dyed with hematoxylin solution for 5min 
and washed with 1% eosin solution for another 5min. 
After the gradient alcohol dehydration, xylene was added 
for tissue transparency, and the sheets were sealed with 
neutral gum. Finally, a light microscope was employed for 
histological observation.

Determination of blood-brain barrier (BBB) permea-
bility and water content of brain tissue

Mice in each group were given 1mL/kg 5% Evans blue 
(EB) solution by tail vein, and the heads were severed for 
brain tissue. The optical density of brain tissue was mea-
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PD-L1 (1:1000), and β-actin (1:1000) were added. With 
the gentle shaking-up, they were incubated at 4°C all 
night. The horseradish peroxidase (HRP)-labeled goat 
anti-rabbit IgG secondary antibody (1:10000) was mixed, 
and then they were processed at 37°C for 90min. After the 
membrane was washed, the target protein bands were de-
veloped according to the ECL chemiluminescence kit, and 
the gel imager was employed to photograph. ImageJ was 
employed to determine the gray values of the target pro-
tein bands. The relative levels of PD-1 and PD-L1 target 
proteins were calculated under the β-actin as the internal 
reference.

Methods for statistics
SPSS 19.0 was utilized for data statistics and analy-

sis. Mean ± standard deviation (͞x±sd) was to show how 
the research results were displayed. A one-way analysis 
of variance was adopted for comparison between groups. 
The difference was statistically considerable with P<0.05.

Results

Drug resistance analysis of Streptococcus pneumoniae
The E test of penicillin was performed on 32 strains 

isolated from PM patients. There were 8 strains with the 
penicillin-susceptible streptococcus pneumoniae (PSSP) 
and 24 strains with the penicillin-resistant streptococcus 
pneumoniae (PRSP). The disk diffusion method was used 
to analyze the resistance of strains to other drugs (Figure 
1). All 24 PRSP strains were resistant to clindamycin and 
erythromycin but susceptible to levofloxacin, linezolid, 
and vancomycin. All 8 PSSP strains were susceptible to 
levofloxacin, linezolid, and vancomycin.

Biofilm semi-quantitative analysis of Streptococcus 
pneumoniae

The A value was used for the semi-quantitative evalua-
tion of the biofilm thickness of Streptococcus pneumoniae. 

sured by a spectrophotometer. The EB content was deter-
mined by the EB standard curve.

After anesthesia, all the heads of the mice were severed, 
and the brain tissues were taken and weighed (W0). Sub-
sequently, they were baked in a drying box until constant 
weight (W1). The water content was calculated with (W0-
W1)/W0×100%.

Determination of the levels of interferon-γ (IFN-γ), in-
terleukin-10 (IL-10), and chemokine C-X-C ligand 10 
(CXCL10) by the enzyme-linked immunosorbent assay 
(ELISA) method

According to the ELISA kit instruction, the gradient 
dilution reagent standard samples were obtained, and the 
standard curves were drawn. After the gradient dilution of 
the CSF samples from mice, they were incubated at 37°C 
for 30 min. The solution was discarded, 50 μL enzyme-
linked reagent was mixed, and they were incubated at the 
same condition and duration. Then, 50 μL chromogenic 
solutions A and B were added. After the gentle shake, they 
were incubated at 37°C for 15 min in dark. 50 μL stop 
buffer was added. With blank wells as the controls, the A 
value was measured at 450nm.

Determination of the messenger ribonucleic acid 
(mRNA) levels of PD-1 and PD-L1 in brain tissues by 
reverse transcription-quantitative real-time polyme-
rase chain reaction (RT-qPCR)

After anesthesia, the mice were decapitated for the 
brain tissues which were washed with PBS and frozen 
at -80°C. The total RNA was extracted according to the 
RNA extraction Kit, and its concentration and purity were 
detected. The reverse transcription of the complementary 
deoxyribonucleic acid (cDNA) was performed according 
to the instructions of the kit. Quantitative primers of target 
genes were synthesized by Shanghai Sangon Biotech Co., 
Ltd. (Table 1). The reaction system was set according to 
the RT-qPCR kit. β-actin gene was regarded as the internal 
reference, and the mRNA level of the target gene was sub-
jected to the 2-ΔΔCt for calculation.

Determination of levels of PD-1 and PD-L1 in brain 
tissues by Western blot method

After anesthesia, the mice were decapitated, and the 
brain tissues were kept, which were rinsed with PBS and 
frozen at -80°C. The radio-immunoprecipitation assay 
(RIPA) buffer was added for cell lysis, and the supernatant 
was subjected to protein quantification by using the BCA 
kit. The concentrated gel and the separated gel were pre-
pared, and electrophoresis of the sample was performed. 
After the membrane was transferred, the sample protein 
was sealed with a blocking solution containing 5% skim 
milk for 1h. Mouse monoclonal antibodies PD-1 (1:1000), 

Gene Primer sequence Primer length (bp)

PD-1
Forward: 5’-GCACCCCAAGGCAAAAATCG-3’

166
Reverse: 5’-CAATACAGGGATACCCACTAGGG-3’

PD-L1
Forward: 5’-GCTCCAAAGGACTTGTACGTG-3’

238
Reverse: 5’-TGATCTGAAGGGCAGCATTTC-3’

β-actin
Forward: 5’-GTGACGTTGACATCCGTAAAGA-3’

245
Reverse: 5’-GCCGGACTCATCGTACTCC-3’

Figure 1. Drug resistance and drug susceptibility analysis of Strepto-
coccus pneumoniae.

Table 1. RT-qPCR primer information.
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When A value ≤ 0.12, the bacterial biofilm didn’t adhere. 
When A value ≥ 0.24, the bacterial biofilm adhesion was 
strong. When A was between 0.12 and 0.24, the adhesion 
ability of bacterial biofilm was poor. Changes in biofilm 
A value of Streptococcus pneumoniae under the penicillin 
with different MIC were detected (Figure 2). With the in-
crease of the MIC of penicillin, the A value of Streptococ-
cus pneumoniae biofilm gradually decreased. Compared 
with the MIC of 0.05 μg/mL, the A value of Streptococcus 
pneumoniae biofilm was greatly decreased at the MIC of 
0.50μg/mL, 1.00μg/mL, and 5.00μg/mL (P<0.05), while 
the difference in the A value of Streptococcus pneumoniae 
biofilm at the MIC of 0.10 μg/mL exhibited no signifi-
cance (P>0.05).

Changes in weight and neurobehavioral scores of mice 
after modeling

The weight changes of each animal model at different 
times after modeling were evaluated (Figure 3). The 
weights in the NC and Sham groups had little change 
at different times, while that of the PM group and PM + 
PD-1 Ab group decreased with the extension of modeling 
time. No considerable difference was observed in the body 
weight of subjects from the NC and Sham groups at dif-
ferent times(P>0.05). The weight of mice in the PM and 
PM + PD-1 Ab groups was notably lower at 6h, 12h, and 
24h after modeling (P<0.05). The weight of mice in the 
PM + PD-1 Ab group was markedly higher based on that 
in the PM group at 6 h, 12 h, and 24 h after modeling 
(P<0.05).

Neurobehavioral scores of each group were evaluated 
at different times after modeling (Figure 4). At different 
times, the neurobehavioral scores of the NC group and 
Sham group had little changes and exhibited no great diffe-
rence (P>0.05). Neurobehavioral scores of the PM groups 
and PM + PD-1 Ab group were observably lower based on 
those of the NC group and Sham group at 6h, 12h, and 24h 
after modeling (P<0.05). The PM group exhibited lower 
neurobehavioral scores than the PM + PD-1 Ab group 
were higher at 12h, and 24h after modeling, showing dif-
ferences with P<0.05.

The difference in brain tissue permeability and water 
content in each group

The EB content and water content in the brain tissues of 
each group were detected and compared (Figure 5). There 
were no considerable differences in Evans Blue content 
and water content between the NC group and Sham group, 
so P>0.05 was applicable. The EB and water contents of 
brain tissues in the PM group and PM + PD-1 Ab group 
were evidently higher and showed great differences with 
those in the NC and Sham groups (P<0.05), while those 
in the PM + PD-1 Ab group were absolutely lower based 
on the contents in the PM group, exerting difference with 
P<0.05.

Brain histopathological changes in each group
The pathological changes in brain tissues were detec-

ted by the HE staining (Figure 6). The brain structure of 
the mice in the NC group and Sham group was normal. In 
the PM group, many inflammatory cells were exuded, and 
blood vessels became congested, with the hollowing-out 
phenomenon of cells. The brain structure of mice in the 
PM + PD-L1 Ab group was improved in contrast to that 

Figure 2. Changes in the A value of Streptococcus pneumoniae bio-
film under the penicillin with different MIC. Note: * meant that com-
pared with 0.05μg/mL, P<0.05.

Figure 3. The weight changes at different times in each group after 
modeling. Note: a, b, and c meant P<0.05 to the NC, Sham, and PM 
groups, respectively.

Figure 4. Changes in neurobehavioral scores at different times of 
each group after modeling. Note: a, b, and c meant P<0.05 to the NC, 
Sham, and PM groups, respectively.

Figure 5. Differences in BBB permeability and water content of brain 
tissue in each group. Note: a, b, and c meant P<0.05 to the NC, Sham, 
and PM groups, respectively.



109

Chen Ma  et al. / PD-1/PD-L1 signaling pathway in Pneumoniae Meningitis, 2023, 69(4): 105-111

in the PM group, but there were still some problems with 
inflammatory cell infiltration.

Differences in the levels of IFN-γ, IL-10, and CXCL10 
in CSF of each group

Levels of IFN-γ, IL-10, and CXCL10 in CSF were 
detected by ELISA (Figure 7). The differences in IFN-γ, 
IL-10, and CXCL10 levels in CSF between the NC group 
and Sham group were insignificant (P>0.05). The IFN-γ 
and CXCL10 levels in CSF of the PM group and PM + 
PD-1 Ab group were manifestly lower, while the IL-10 le-
vel was higher when they were compared to the NC group 
and Sham group, exhibiting obvious differences with great 
significance with P<0.05. The IFN-γ and CXCL10 levels 
in CSF of the PM + PD-1 Ab group were markedly higher 
but the IL-10 level was lower based on the values in the 
PM group, exhibiting great differences (P<0.05).

Differences in the mRNA levels of PD-1 and PD-L1 in 
brain tissues of each group

mRNA levels of PD-1 and PD-L1 in the brain tissues 
were illustrated in Figure 8. The differences in the mRNA 
levels of PD-1 and PD-L1 between the NC group and the 
Sham group weren’t considerable (P>0.05). Those in the 
PM group and PM + PD-1 Ab group were obviously higher 
than those in the NC group and Sham group (P<0.05). The 
mRNA levels of PD-1 and PD-L1 in the PM + PD-1 Ab 
group were notably lower than the PM group, presenting 
great differences with P<0.05.

Differences in the PD-1 and PD-L1 levels in brain tis-
sues of each group

Western blot was adopted to detect the contents of 
PD-1 and PD-L1 in the brain tissues of each group (Figure 
9). The PD-1 and PD-L1 levels in the NC group exhibited 
a not obvious difference from that in the Sham group, so 
P>0.05 was applicable. Based on the NC and the Sham 
groups, the PD-1 and PD-L1 protein expression in brain 
tissues of the PM group and PM + PD-1 Ab group were 
absolutely higher (P<0.05). The PD-1 and PD-L1 expres-
sions in brain tissue of the PM + PD-1 Ab group were 
remarkably lower based on the values in the PM group, 
displaying obvious differences with P<0.05.

Discussion

Streptococcus pneumoniae can cause invasive infec-
tions such as meningitis and bloodstream infections in 
children. Its clinical mortality ranges from 11% to 60%, 
and 25% to 50% of the surviving children have severe 
neurological sequelae (12, 13). Currently, the drug resis-
tance of Streptococcus pneumoniae is becoming increa-
singly serious in clinical practice, and its drug resistance 
rate to penicillin is as high as 60%-88% (14). According 

to this experiment, the resistance rate of CSF isolates from 
PM children to penicillin was 75%, and that to clindamy-
cin, erythromycin, and trimethoprim-sulfamethoxazole 
were 87.5%, 84.4%, and 81.3%, respectively. However, 
the isolates were susceptible to levofloxacin, linezolid, 
and vancomycin. Hence, levofloxacin, linezolid, and van-
comycin could be adopted for the treatment of PM clini-
cally. Besides, biofilm leads to bacterial resistance to anti-
biotics, but this resistance is reversible and unstable (15). 
The antibiotic-susceptible Streptococcus pneumoniae has 
thick biofilms (16). The experiment in this work showed 
that the thickness of Streptococcus pneumoniae biofilm 
decreased with the increase of MIC of penicillin. Never-
theless, the formation of bacterial biofilm is very complex 
that is affected by many factors (17). Therefore, it needs to 
be further explored in the future.

The basic pathological changes of meningitis caused 
by Streptococcus pneumoniae include soft meningitis, 
hyperemia of meningeal vessels, and infiltration of inflam-
matory cells (18). Presently, the preparation methods for 
the PM animal models include bacterial inoculation and 
induction in the nasal cavity, vein, and abdominal cavity 
(19). Intraventricular bacterial inoculation can effectively 
avoid BBB and reduce the mortality caused by non-me-
ningitis infection (20). In this experiment, the PM ani-
mal model was prepared by the intraventricular injection 
of Streptococcus pneumoniae. The weight and neurobe-
havioral score of the PM mice were signally lower than 
that of the normal mice, while the BBB permeability and 
water content of the brain were markedly higher. Further-
more, there were inflammatory cell infiltration and vas-
cular congestion in the staining of brain tissue sections. It 
demonstrated that the models were successfully prepared.

Macrophages are a kind of antigen-presenting cells as 
well as a kind of innate immune cells (21). Macrophages 

Figure 6. HE staining results of brain tissue sections of the mice. 
Note: the magnification was x 100.

Figure 7. Comparison of the differences in IFN-γ, IL-10, and 
CXCL10 levels in each group. (A: IFN-γ level; B: IL-10 level; C: 
CXCL10 level). Note: a, b, and c meant P<0.05 to the NC, Sham, and 
PM groups, respectively.

Figure 8. Differences in the mRNA levels of PD-1 and PD-L1 in brain 
tissues of each group. (A: PD-1 mRNA expression; B: PD-L1 mRNA 
expression). Note: a, b, and c meant P<0.05 to the NC, Sham, and PM 
groups, respectively.
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are the key cells to resist the disease of Streptococcus 
pneumoniae and other bacteria, whose activation state can 
be classified into the classic activation M1 type and alter-
native activation M2 type (22). The M1 type depends on 
the cell-inflammatory mediators such as IFN-γ, TNF-α, 
and IL-2 to submit antigens, thereby eliminating the pa-
thogens in the body (23). The M2-type activation depends 
on IL-10 and other inflammatory cytokines to activate 
inflammatory stimuli and mediate the immune escape of 
tumors and pathogens. The increase of PD-L1 antibody 
level helps promote the release of inflammatory factors 
in the body, thus promoting the transformation of macro-
phages from M2 to M1 (24, 25). The IFN-γ and CXCL10 
levels were decreased in the brains of PM mice, while the 
IL-10 levels were increased according to the results of this 
experiment. It indicated that the immune function of Th1 
and Th2 cells was abnormal in the pathogenesis of PM 
(26). Nevertheless, after the PD-1 antibody was added, 
the IFN-γ and CXCL10 levels in the brain tissue of the 
PM mice were increased, while the IL-10 levels were de-
creased. Also, Meningitis has been studied from cellular 
and molecular aspects (27-29).

These results indicated that the inhibition of the PD-1/
PD-L1 SPW could enhance the immune function of T cells, 
maintain the immune disorder of Th1/Th2, and achieve the 
effect of the anti-infection of Streptococcus pneumoniae.

Clinically, Streptococcus pneumoniae in CSF of child-
ren with PM showed multi-drug resistance. However, the 
isolated strains were susceptible to levofloxacin, linezolid, 
and vancomycin, so these drugs could be selected for the 
infection treatment. The formation of biofilm of Strepto-
coccus pneumoniae was related to the MIC of antibacterial 
drugs, but the mechanism of action needed to be further 
explored. During the occurrence and progression of PM, 
blocking the PD-1/PD-L1 SPW played a therapeutic role 
in PM by affecting the activation state of macrophages and 
the Th1/Th2 type immune response. Nonetheless, regula-
ting PD-1/PD-L1 SPW and the PM process needed to be 
further investigated. In conclusion, the results of this work 
could provide new research ideas for the clinical treatment 
of PM.
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