Activation-induced cytidine deaminase displays an alternative co-factor for modulating PIM1 expression in diffuse large B cell lymphoma cell lines

Yang Wang1*, Yinsha Miao1,2*, Wen Zhou1, Yu Bi1, Yanhong Ji1 and Yunfeng Ma1*

1 Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Centre, Xi’an, Shaanxi, China
2 Department of Clinical Laboratory, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China

These authors contributed equally to this article.

ARTICLE INFO

Original paper

Article history:
Received: July 1, 2022
Accepted: March 23, 2023
Published: March 31, 2023

Keywords:
Activation-induced cytidine deaminase; PIM1; DNA methyltransferase 1; Ten eleven translocation family member 2; Diffuse large B cell lymphoma

Abstract

Diffuse large B cell lymphoma (DLBCL) is a B cell neoplasm characterized by high PIM1 expression, which is responsible for poor prognosis. Activation-induced cytidine deaminase (AID) is closely linked to PIM1 hypermutation in DLBCL. Here, we found that the DNA methyltransferase 1 (DNMT1) level decreased with AID depletion in the DLBCL cell line SU-DHL-4, and increased significantly when AID was highly expressed. The double ablation of AID and DNMT1 contributed to increased PIM1 expression, which initiated faster DLBCL cell proliferation, whereas ten-eleven translocation family member 2 (TET2) decreased with AID deficiency and increased with AID overexpression in DLBCL cell line OCI-LY7. The double depletion of AID and TET2 was associated with decreased PIM1 levels and showed slower cell division. We suggest an alternative role of AID as a co-factor of DNA methylation cooperated with DNMT1, or of DNA demethylation associated with TET2 in modulating PIM1 expression. Our findings demonstrate that AID interacts with either DNMT1 or TET2 to form a complex to bind with a PIM1 promoter and thus is responsible for the modulation of PIM1 expression. These results provide insights into an alternative role of AID to DLBCL-associated genes.

Introduction

Diffuse large B cell lymphoma (DLBCL) is a hematological malignancy characterized by a large degree of heterogeneous gene expression (1-3). One such gene is proto-oncogene PIM1 (the proviral insertion site of Moloney murine leukemia virus) which is highly expressed in up to 50% of DLBCL patients (4,5) and promotes survival and proliferation of DLBCL cells (6-8). PIM1, located on chromosome 6p21, produces a transcript that contains a G/C-rich sequence in the 5’ untranslated region (UTR) and five copies of AUUUA destabilizing motifs in the 3’ UTR. The use of alternative translation initiation sites (AUG or CUG) results in the synthesis of 34 KD and 44 KD, two different protein isoforms that both retain their serine/threonine kinase activity. Moreover, PIM1 kinases have no regulatory domains (5). The crystal structure of PIM1 reveals the presence of a unique hinge region that connects the two lobes of the protein kinase domain. As a result, the manner of ATP binding to PIM1 kinases fundamentally differs from the manner in which it binds to other protein kinases, which develop several small-molecule inhibitors for PIM1 kinases. These compounds either interact with the hinge backbone of PIM1 through hydrogen bond formation or form polar interactions with the active site lysine residue (9). However, PIM1 inhibitors only modestly impair DLBCL cell survival, suggesting that PIM1 kinases represent molecular progression markers rather than primary therapeutic targets in DLBCL (10). Thus, investigating the mechanisms of PIM1 expression in DLBCL beyond the direct inhibition of PIM1 would be an effective approach for improved treatment of DLBCL with clinical heterogeneity.

Previous studies indicate that aberrantly high PIM1 expression occurs primarily due to activation-induced cytidine deaminase (AID)-mediated chromosomal translocations or abnormal PIM1 hypermutation, leading to DLBCL lymphomagenesis (10-12). A genome-wide translocation sequencing (HTGTS) study demonstrated an important role of AID in controlling methylation diversity in germinal center B cells (GCB) (13), indicating the possible involvement of AID in the regulation of gene expression through its epigenetic functions (8,13-15). Elucidating the mechanism underlying the alternative epigenetic modulation of AID to PIM1 might provide a good modality for DLBCL treatment.

Here, we used AID-deficient and overexpressed DLBCL cells to identify that AID positively or negatively regulates PIM1 by binding to the promoter together with DNA methyltransferase 1 (DNMT1) or ten-eleven translocation family member (TET2) respectively (16,17). We observed that PIM1 expression is regulated either by treatment with...
5-azacytidine (an inhibitor of DNMT1) or with DMOG (an inhibitor of TET2). Our results provide a novel concept for an alternative co-factor role of AID in modulating gene expression by forming different complexes with TET2 or DNMT1.

Materials and Methods

Cell lines and cell treatment

BeNa Culture Collection provided SU-DHL-4 and OCI-LY7 DLBCL cell lines. The cells were cultured in IMDM with 10% FBS, non-essential amino acids, 1% penicillin-streptomycin, and 50 μg β-mercaptoethanol. The culture was maintained at 37°C with 5% CO2.

SU-DHL-4 cells were treated with 5-Azacytidine (10 μM) (S1782, Selleckchem, Houston, TX, USA) for 24 hours. The OCI-LY7 cells were treated with DMOG (1.5 mM) (S7483, Selleckchem, Houston, USA) for 96 h.

Establishment of AID-deficient and AID-overexpressed DLBCL cell lines

Dr. Junjie Zhang from the University of Southern California (Los Angeles, USA) gifted the pL-CRISPR.EFS. PAC. The AIDΔ4 sgRNA was designed at Zhang laboratory's CRISPR design website (http://crispr.mit.edu/), then sequenced by Sunny Biotech Co., Ltd. A non-genome targeting sgRNA was utilized as a control. The gRNA sequences are listed in Table 1. The Pwpi-GFP plasmids were used to create Pwpi-AID-GFP lentivirus constructs by inserting AID cDNA into the lentiviral constructs.

Table 1. The sequence of gRNAs for Crispr/Cas9 targeting AID.

<table>
<thead>
<tr>
<th>gRNA</th>
<th>Oligo 1 (5’-3’)</th>
<th>Oligo 2 (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AICDA-gRNA-1</td>
<td>CACCGGCTCTTCTTACTACGTAAGCAAGGG</td>
<td>AAACC CGGTCTACGTAAGTGAAGAGGCC</td>
</tr>
<tr>
<td>AICDA-gRNA-2</td>
<td>CACCGGTATCACTCAACCTCATACAGGG</td>
<td>AAACC CGGTATGAGTGTGGATGACTTACC</td>
</tr>
<tr>
<td>AICDA-gRNA-3</td>
<td>CACCGGACTTGGATAAGCAGCTTCCTAGGG</td>
<td>AAACC CGGAAGTTGGCTATCAAAGTCC</td>
</tr>
<tr>
<td>Non-targeting control</td>
<td>CGCTTCGGCGGCCCCGCTCAA</td>
<td>ACGGAGGCTAAGCGGTCGCAA</td>
</tr>
</tbody>
</table>

RNA extraction and quantitative RT-PCR

Isolation of total RNA from cell pellets was carried out using TRIzol (Invitrogen; Thermo Fisher Scientific, Inc.) in accordance with the manufacturer’s guidelines. Synthesis of cDNA for use in quantitative PCR studies was performed using the PrimeScript™ RT reagent Kit (TaKaRa Bio, Inc.). Real-time PCR reactions were carried out on an Mx3000P qPCR system (Agilent Technologies, Inc.) using SYBR-Green dye (TaKaRa Bio, Inc.) in triplicate. An endogenous control was established by measuring the expression of the ACTB gene product. The fold change in each group was calculated and compared (18,19). Table 2 provides the list of primers used.

Table 2. Sequences of primers used for quantitative real-time PCR.

<table>
<thead>
<tr>
<th>ID</th>
<th>Forward strand (5’-3’)</th>
<th>Reverse strand (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AICDA</td>
<td>CTACATCTCAGGACTGGGACC</td>
<td>TCAGACTGAGGTTGGGTTTC</td>
</tr>
<tr>
<td>PIM1</td>
<td>AAAATCAACTCGTTGCCCA</td>
<td>GAGTGCTCAGTGATAGCCGAG</td>
</tr>
<tr>
<td>ACTB</td>
<td>ACTCTTCCAGCTTCTCCTCC</td>
<td>CGTACAGGTCTTGGCGATG</td>
</tr>
</tbody>
</table>

In vitro cell proliferation

To assess proliferation rates, 1× 10⁶ cells were cultured in six-well plates with 3 mL of FBS-free Dulbecco’s Modified Eagle Medium (HyClone) supplemented with non-essential amino acids and penicillin-streptomycin for 36 h. The cells were stained with trypan blue, and the absolute number was determined using the Nexcelom chamber.

Immunoblot analysis

To extract the proteins, cell pellets were dissolved in RIPA buffer with various protease inhibitors (Sigma, Shanghai, China). After sonication and centrifugation, the protein supernatant was collected and loaded onto SDS-PAGE gels. The blots were then probed with specific antibodies including anti-AID, anti-TET2, anti-DNMT1, and anti-PIM1(CST, Danvers, MA, USA). GAPDH was used as a loading control. The protein signal was detected using secondary antibodies conjugated with horseradish peroxidase and visualized with chemiluminescence.

Chromatin immunoprecipitation

Previously published protocols were followed for chromatin immunoprecipitation (ChiP) experiments (20). Briefly, 30 million cells were fixed with 1% HCHO (Sigma) for 15 minutes at room temperature and then quenched with 0.125 M glycerine. Chromatin was isolated, sonicated to obtain fragments of 300-500 bp, and pre-cleared with Dynabeads Protein G beads (Invitrogen). Approximately half million cell equivalents were used as input, and the remaining chromatin was incubated overnight at 4°C with 5 μg of specific antibody or normal IgG. Immunocomplexes were captured with Dynabeads Protein G beads (Invitrogen), cross-links were reversed, and DNA was purified for qPCR using SYBR Premix Ex TaqTM
AID mediates divergent PIM1 levels in distinct DLBCL cells. (A) PIM1 mRNA levels in 4AID-WT, 4AID-KO, and 4AID-OE were detected by Real-Time PCR. (B) PIM1 mRNA levels in 7AID-WT, 7AID-KO, and 7AID-OE were detected by Real-Time PCR. *β-actin was taken as an internal gene control. (C) DNMT1, PIM1, and AID protein levels in 4AID-WT, 4AID-KO, and 4AID-OE were detected by immunoblotting. GAPDH protein was taken as an internal control. The immunoblots were performed by grayscale analysis, the relative grayscale of PIM1 bands in immunoblots relative to GAPDH was performed, analyzed statistically, and presented as histograms. (D) TET2, PIM1, and AID protein levels in 7AID-WT, 7AID-KO, and 7AID-OE were detected by immunoblotting. GAPDH protein was taken as an internal control. The immunoblots were performed by grayscale analysis, the relative grayscale of PIM1 bands in immunoblots relative to GAPDH was performed. Statistical analysis was done and presented as histograms. Data are presented as mean ±SD. ** and *** represent P<0.05, P<0.01 and P<0.001, respectively. OE, overexpression.
AID-DNMT1 and AID-TET2 complexes recruit PIM1 promoters in distinct DLBCL cell lines.

Combined AID/DNMT1 or AID/TET2 depletion leads to reduced or increased PIM1 levels in DLBCL cells

To further elucidate the combined role of AID and DNMT1 or AID and TET2 in DLBCL cells, we introduce the DNMT1 inhibitor 5-Azacytidine or TET2 inhibitor DMOG(23,24). Administration of 5-Azacytidine caused a nearly 13-fold increase of PIM1 transcripts in AID-KO SU-DHL-4 cells (p < 0.01) (Fig. 3A), and about 80% decrease of PIM1 transcripts in AID-KO OCI-LY7 cells (p < 0.001) (Fig. 3C). According to the immunoblot results, the 5-Azacytidine or DMOG treatments caused a decrease in DNMT1 or TET2 and AID (Fig. 3B, D, lanes 2 and 4). In addition, the absence of both AID and DNMT1 caused apparent elevated PIM1 levels in AID-KO SU-DHL-4 (p < 0.001) (Fig. 3B, lane 4), while depletion of both AID and TET2 led to reduced PIM1 protein level in AID-KO OCI-LY7 (p < 0.001) (Fig. 3D, lane 4). The grayscale analysis also confirmed alteration of the PIM1 protein level caused by combined inhibition of AID-DNMT1 or AID-TET2 (Fig. 3B, D). The data identified the combined enhancement or suppression effect of AID/DNMT1 or AID/TET2 to PIM1 in DLBCL. Here, the data suggest that AID could play different roles beyond its mutation function when forming complexes with different proteins, such as DNMT1 and TET2.

AID/DNMT1-mediated PIM1 inhibition or AID/TET2-mediated PIM1 activation show divergent DLBCL cell proliferation

To elucidate the impact of AID/DNMT1 or AID/TET2 mediated PIM1 inhibition or activation on the cellular function of DLBCL, we kinetically measured cell numbers in the absence of nutrition for up to 36 h. Interestingly, we observed elevated cell division in AID-KO SU-DHL-4 and AID-WT OCI-LY7 cells. Contrastingly, proliferation was not reported in AID-WT SU-DHL-4 and AID-KO OCI-LY7 cells (Fig. 4). The results suggest a divergent proliferation in DLBCL cell lines, in which PIM1 expression is inhibited by the AID/DNMT1 complex in SU-DHL-4 cells, while PIM1 expression is increased by the AID/TET2 complex in OCI-LY7 cells.

Discussion

Figure 2. AID binds to the promoter of PIM1 as a co-factor. (A, B) Genome DNA from Chromatin Immunoprecipitation (ChIP) of PIM1 promoter by anti-H3K4me3, anti-AID, and anti-DNMT1 pull down in AID-WT, and AID-KO SU-DHL-4 cells were detected by quantitative PCR (A) and PCR (B). (C, D) Genome DNA from Chromatin Immunoprecipitation (ChIP) of PIM1 promoter by anti-H3K4me3, anti-AID, and anti-TET2 pull down in AID-WT, and AID-KO OCI-LY7 cells were detected by quantitative PCR (C) and PCR (D). Data are presented as mean ±SD. * and ** represent P<0.05 and P<0.01, respectively.

Figure 3. Combined depletion of AID/DNMT1 or AID/TET2 leads to elevated or dropped PIM1 levels in DLBCL cells. (A) the transcript levels of PIM1 in 4AID-WT and 4AID-KO after being treated with 5-Azacytidine (10μM) for 24 hours were detected by Real-Time PCR. β-actin was used as an internal gene control. (B) the transcript levels of PIM1 in 7AID-WT and 7AID-KO after being treated with DMOG (1.5 mM) for 96 hours were detected by Real-Time PCR. β-actin was taken as an internal gene control. (C) DNMT1, PIM1, and AID protein levels in 4AID-WT and 4AID-KO after being treated with 5-Azacytidine (10μM) for 24 hours were detected by immunoblots. GAPDH protein was used as an internal control. The immunoblots were performed using grayscale analysis, the relative grayscale of PIM1 bands in immunoblots relative to GAPDH was statistically analyzed and shown as histograms. (D) TET2, PIM1, and AID protein levels in 7AID-WT and 7AID-KO after being treated with 5-Azacytidine (10μM) for 24 hours were detected through immunoblots. GAPDH protein was taken as an internal control. The immunoblots were performed by grayscale analysis, the relative grayscale of PIM1 bands in immunoblots relative to GAPDH was performed, statistically analyzed, and presented as histograms. Data are presented as mean ±SD. *, **, and *** represent P<0.05, P<0.01 and P<0.001, respectively.
Previous studies suggest that the deregulation of \(PIM1 \) is linked to DLBCL pathogenesis (3,4). The complex mechanisms involved in \(PIM1 \) regulation are reported in DLBCL and include a series of gene networks involved in transcription and post-transcription regulation (25,26). However, the \(AID/DNMT1 \) or \(AID/TET2 \) cooperation would be another possible method of \(PIM1 \) expression modulation. This alternative \(PIM1 \) regulatory mechanism is yet to be elucidated. According to this study, \(PIM1 \) was either silenced or activated in different DLBCL partially due to the effects of \(AID/DNMT1 \) or \(AID/TET2 \) complex binding to the \(PIM1 \) promoter. These results suggest an alternative co-factor role of \(AID \) to \(PIM1 \) in DLBCL and enable cancer to be classified based on the presence or absence of \(PIM1 \).

\(AID \) tends to cooperate with other proteins (15,27), which recruit it to DNA transcription regions (28,29), with the aim of regulating gene expression. However, whether gene expression is modulated by \(AID \) and other protein cooperation is yet to be elucidated. Here, we identified that the \(AID/DNMT1 \) or \(AID/TET2 \) complex is involved in the silencing or activation of \(PIM1 \) in DLBCL (Fig. 4). The results partially explain the findings that \(AID \) has a role in DNA epigenetic regulation, mainly methylation or demethylation modifications, which manifest through the promotion or inhibition of gene expression (Fig. 2). As a co-factor, \(AID \) assists DNMT1 in inhibiting \(PIM1 \) expression or enables TET2 to induce \(PIM1 \) expression in DLBCL (Fig. 4). This concept provides a new approach to understanding \(AID \)'s function in cancers.

Some patients with DLBCL develop drug resistance to traditional therapeutic regimens, such as chemotherapy or R-CHOP (anti-CD20 monoclonal antibody-rituximab, combined with cyclophosphamide, vincristine doxorubicin, and prednisone) (30-32). Targeting \(PIM1 \) inhibitors could also be a therapeutic alternative (33), however, the effect is unsatisfactory (34). Our results revealed weak \(PIM1 \) expression in SU-DHL-4 DLBCL cells while strong \(PIM1 \) expression in OCI-LY7 DLBCL cells (Fig. 1 and Fig. 4). This suggests a way of classifying DLBCL through negative or positive \(PIM1 \) expression. For the DLBCL with weak \(PIM1 \) expression, alternative treatment targets would be selected instead of \(PIM1 \) inhibition (Fig. 3). In addition, selecting checkpoints identified in this study (\(AID/DNMT1 \), and \(TET2 \)) would be an effective therapy for DLBCL (Fig. 4). Identifying the specific pathogenesis of heterogeneous DLBCL has great potential for the development of personalized treatment.

However, the study has limitations. First, we checked the existence of \(AID/DNMT1 \) in OCI-LY7 and \(AID/TET2 \) in SU-DHL-4, but the \(AID/DNMT1 \) had weaker enrichments to \(PIM1 \) in OCI-LY7, and \(AID/TET2 \) had lower binding to \(PIM1 \) in SU-DHL4. The latent mechanisms need to be further explored. Second, more investigations into the alternative role of \(AID \) in DLBCL should be performed to the abundance of cancer-associated genes to confirm our proposed new role of \(AID \) beyond the deamination function. Third, all the hypotheses and results need to be verified in clinical DLBCL samples.

In conclusion, our data suggest an alternative co-factor role of \(AID \) to \(PIM1 \) in DLBCL. The \(AID/DNMT1 \) or \(AID-TET2 \) complex directly binds to the promoter of \(PIM1 \), thus inhibiting or enhancing \(PIM1 \) expression in the progression of DLBCL. Differential treatment of DLBCL based on \(PIM1 \) expression would be an effective method of individualizing therapy. In the future, our findings may be useful for the in-depth exploration of \(AID \)'s alternative role beyond its deamination in tumor-related genes in DLBCL.

Acknowledgments

We would like to thank Editage [http://online.editage.cn/] for English language editing.

Interest conflict

The authors declare that they have no competing interests.

Consent for publications

All the authors read and proved the final manuscript for publication.

Availability of data and material

All data generated during this study are included in this published article.

Author Contributions

Y. W and YS M performed the majority of experiments. W.Z and Y.B generated the constructs. Y. Ji and Y. Ma designed the experiments and wrote the manuscript.

Funding

This work was supported by the Natural Science Foundation of Shaanxi Province (2020JM-022 to Ma YF), Xi'an Health Commission Youth Training Project and Xi'an Association for Science and Technology youth Talent Promotion Project (2022qn12 and 095920221323 to Miao Y).

Ethics approval and consent to participate

No human or animals were used in the present research. The study protocol was approved by the Ethics Committee of Xi'an Jiaotong University.

References

