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Introduction

Cellular exosomes are a particular type of extracellular 
vesicle that cells secrete into the extracellular environment 
via the endocytic pathway (1). The exosomes are released 
during endosome-plasma membrane fusion. An endosome 
membrane invagination produces them to generate vesicles 
located within the endosome's lumen or multivesicular 
bodies (MVBs) (2). Exosomes frequently contain plasma 
membrane proteins, cell cytosol, lipids, metabolites, and 
nucleic acids such as miRNA, mRNA, non-coding RNA, 
and DNA (3). They are hypothesized to be involved in 
many processes, including cell-cell information exchange, 
coagulation, antigen presentation, and protein and nucleic 
acid transfer (4). When various types of cells are grown 
in a culture medium, they release membrane-bound ve-
sicles termed extracellular vesicles (EVs) (5), containing 
vesicles of various sources, biogenesis, composition, and 
sizes. Apoptotic bodies (1,000-5,000 nm), microvesicles 
(100-1,000 nm), and exosomes (30-100 nm) that are se-
creted by apoptotic cells are the three broad categories to 
which EVs belong (6). Exosomes are vesicles with sur-
rounding lipid bilayers having a 1.10–1.20 g/ml density. 

They are released following MVB fusion with the plasma 
membrane, and they include various membrane-associated 
proteins, including tetraspanins (e.g., CD82, CD81, CD9, 
and CD63), proteins implicated in the biosynthesis of 
MVB (TSG101 and Alix), MHC-I and MCH-II, GTPases, 
and heat-shock proteins (HSP) (7). The tetraspanin protein 
family members CD81, CD63, and CD9, are the most pre-
valent exosome surface markers. These proteins assemble 
tetraspanin-rich microdomains to mediate exosome secre-
tion and assist in exosome organization (8).

The physiological function of exosomes is poorly 
understood. In addition, they are significant components 
in various cell types' conditioned cell culture medium, 
including MSCs. Initially, it was believed that the primary 
function of exosomes was to transport and eliminate extra 
protein and other nonfunctional cellular molecules (9). 
In the cardiac ischemia/reperfusion injury animal model, 
MSC-derived exosomes were initially studied (10). Mul-
tiple studies revealed the capacity of exosomes produced 
from MSCs to renew and repair tissue, their potential for 
preventing apoptotic and reducing inflammation, and their 
involvement in cardiac remodeling and regeneration pro-
cesses (11). Exosome isolation and identification pave the 
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way for cell-free therapy, which may help overcome cell 
therapy limitations like immunological incompatibility, 
prolonged waiting periods, and high prices associated with 
manufacturing biological substances (12). Exosome iso-
lation aims to obtain a pure sample of exosomes to study 
their action mechanisms and potential biomedical applica-
tions. Numerous additional methods have been developed. 
Several scientists managed to isolate exosomes utilizing 
affinity capture, polymer-based precipitation, ultrafiltra-
tion, chromatography, and ultracentrifugation. Exosome 
isolation occurs using various methods, depending on their 
source, but ultracentrifugation is the most common. This 
technique is effective at pelleting molecules such as aggre-
gates, extravesicular protein complexes, and lipoproteins. 
However, it is a time-consuming procedure with several 
phases and expensive equipment (13). This work aims 
to characterize and identify exosomes extracted from the 
MSCs' cell culture supernatant, in addition to identifying 
and counting the number of exosomes generated.

Materials and Methods

Preparation of MSCs derived exosomes
Exosomes generated from MSCs were isolated using 

the supernatants of MSC-conditioned media. MSCs de-
rived from rat bone marrow were prepared at the Facul-
ty of Medicine's Medical Experimental Research Center 
(MERC), Mansoura University, Egypt. In Dulbecco's 
Modified Eagle Medium (DMEM), lacking fetal bovine 
serum and with 0.5% human serum albumin (Sigma-
Aldrich), MSCs were cultivated overnight. Trypan blue 
exclusion revealed that cell viability (for cells-cultured 
overnight) would surpass 99%. For seven days, a cell den-
sity of 4,000 cells per cm2 was used for cell plating. On 
day seven, cells were trypsinized using 0.25% trypsin in 
one mmol per liter EDTA at 37°C for 5 min, counted, and 
then replated in growth media at 2000 cells per cm2 for 
an additional 7-day period (end of passage 1). The growth 
was maintained until the third passage (14). A collection 
of the conditioned media was formed and kept at -80°C.

Isolation of MSC-derived exosomes
MSCs were cultured in a normal growth medium until 

they reached 80% confluence. A serum-free medium was 
substituted for the medium. For removing any remaining 
cells, the media for cell culture was collected after 48 
hours and then centrifuged at 4°C for ten minutes at 300 
xg, followed by 2000 xg for 10 minutes, and then 10000 
xg for 30 minutes. Twenty ml of supernatant was centrifu-
ged at 100,000 xg (Sorvall SureSpin 630) for 70 minutes 
at 4°C to isolate exosomes. This resulting pellet was rin-
sed using an equal volume of ice-cold PBS before being 
centrifuged for 70 minutes at 100,000 xg 4°C. The EVs 
were subsequently contained in the pellet. The exosome-
containing pellet was suspended in phosphate buffer saline 
(50 to 100 μl) (15).

MSC-derived exosomes characterization

Transmission electron microscopy (TEM)
Paraformaldehyde at a concentration of 2% was used 

to fix exosome samples. On EM grids with Formvar car-
bon coating, five μl of each sample were applied, and they 
were left to adsorb for 20 minutes at room temperature. 

Grids underwent two rinses in water for five minutes be-
fore contrast (negatively) staining EVs with 1% phospho-
tungstic acid for thirty seconds after samples were fixed 
with glutaraldehyde (1%). The removal of grids was per-
formed using stainless steel loops. In addition, the filter 
paper was used to absorb any extra liquid. The produced 
exosomes were observed after drying using a transmission 
electron microscope (Hitachi H-7650, Hitachi, Tokyo, Ja-
pan) with an 80-kilovolt acceleration voltage and magni-
fications ranging from 20,000X to 100,000X to determine 
the particles' size (16).

Nanoparticle tracking analysis
A 1:10 dilution of exosomes in phosphate buffer saline 

was used for NanoSight LM20 nanoparticle tracking ana-
lysis (NTA) (NanoSight, Malvern Panalytical Ltd, Mal-
vern, UK). Each particle's Brownian motion was followed 
over frames, and the Stokes-Einstein equation was used to 
determine its size (17).

Protein quantification in the isolated exosomes
PBS was used to extract and re-dissolve the pellet. The 

BCA Protein Assay Kit (Boster Biological Technology, 
Pleasanton, CA, USA, Catalog # AR0146- 500) was used 
to assess the protein content of the extracted exosome frac-
tion using the standard ''bovine serum albumin'' per the 
manufacturer's guidelines. 

Western blotting
Exosomes were lysed in RIPA buffer using protease 

inhibitors and 1 mM phenylmethylsulfonyl fluoride. Exo-
somal lysates in equal volumes (50 μL) were subjected to 
non-reducing 12.5% SDS-PAGE for CD63 and CD81 and 
subsequently transferred utilizing a wet transfer system 
(Bio-Rad Laboratories, Hercules, CA, USA) on a PVDF 
membrane (MDI Membrane Technologies, Harrisburg, PA, 
USA). After blocking, in 1 TBS-T solution (1:5000; Ab-
cam, Cambridge, MA, USA) containing 5 percent nonfat 
skim milk, the membrane was incubated with the CD63 
primary antibody. The antibodies utilized were CD63 
(Biolegend, Cat. No. 0353007) and polyclonal sheep IgG 
anti-rabbit CD81 (Biolegend, Cat. No. 0349509) with an-
tigen affinity purification, as well as beta-actin. They were 
incubated at 4°C overnight. After being washed, the blot 
was incubated with a secondary antibody conjugated to 
horseradish peroxidase (HRP), and it was then developed 
utilizing an ECL imager (Invitrogen, a brand of Thermo 
Fisher Scientific).

Exosome labeling with PKH26
To label an aliquot of frozen EV, Sigma-PKH26 

Aldrich's Fluorescent Cell Linker Kits were utilized based 
on the manufacturer's instructions. A frozen aliquot of 
EV was resuspended in phosphate-buffered saline (1ml). 
PKH26 was utilized to determine the localization of exo-
somes in kidney tissue (Sigma-Aldrich, St. Louis, MO, 
USA). The exosome pellet was diluted to a volume of 1 
ml using the kit solution from the PKH-26 kit. Afterward, 
2μ of the fluorochrome was added to this suspension. This 
suspension was then incubated for 15 minutes at 38.5°C. 
After adding 7 ml of serum-free HG-DMEM. The suspen-
sion was ultracentrifuged again for one hour at 100,000 g 
and 4°C. In order to inject the final pellet into an experi-
mentally induced rat later, it was instantly resuspended in 
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red Balanites aegyptiaca fruit aqueous extract of (80 mg/
kg) orally for four weeks daily (19) and MSCs (1.0 × 104 
cell/g) two times every four weeks via the tail vein (22).

Group V:  Balanites + exosomes treated group; dia-
betic nephropathy was induced in rats, and they received 
prepared Balanites aegyptiaca fruit aqueous extract of (80 
mg/kg) orally for four weeks daily (19)  and twice exo-
some injection (100 µg per kg per dose dissolved in 200 
μL PBS) (23). The first was administered in the eighth 
week of the study, while the second was administered after 
the tenth week(21).

Group VI: MSCS treated group; four weeks following 
STZ injection, DN rats were treated with 1.0 × 104 MSCs 
per gram b. wt per animal suspended in 200 μL phosphate 
buffer saline (PBS) two times every four weeks via the tail 
vein (22).

Group VII: Exosome-treated group; rats were induced 
with diabetic nephropathy and administered twice intra-
venous injections of exosomes (100 g per kg per dose dis-
solved in 200 μL phosphate-buffered saline (PBS) intrave-
nously (23). The first was administered in the eighth week 
of the study, while the second was administered at the end 
of the tenth week (21). 

Tissue sampling
Saline-washed pancreatic tissue was cut into portions 

and homogenized in 10 mM potassium phosphate buffer 
(pH = 7.4). The weight ratio of the homogenized tissue to 
the buffer used was 1:5. The homogenates were centrifu-
ged at 4000 g at 4°C for 10 minutes to collect the super-
natant for MDA and TAC measurements, while the remai-
ning was immersed in neutral buffered formalin at 10% for 
histological analysis.

Biochemical parameters

Determination of oxidative stress and antioxidant bio-
markers in pancreatic tissue homogenate

The homogenized pancreatic tissue sample was uti-
lized to determine oxidative stress and antioxidant bio-
markers. The MDA level was measured colorimetrically 
using a commercial kit obtained from Biodiagnostic Com-
pany, Egypt, to monitor the extent of lipid peroxidation 
(24). The total antioxidant capacity was assessed utilizing 
commercial kits purchased from Biodiagnostic Company, 
Egypt (25).

Histopathological examination of the pancreas:
After 24 hours of sacrification, pancreatic tissue 

samples were immediately fixed in neutral buffered for-
malin at a concentration of 10 percent. Then, 4-μm-thick 
paraffin slices were prepared using the fixed samples 
through a processing step. Hematoxylin and eosin (H&E) 
were used to examine the pancreas structure by staining 
prepared slices. The slides were then examined using a 
light microscope (26). 

Morphometry
Sections underwent semi-quantitative analysis for the 

histological assessment of the severity of pancreatic lesions 
(27); Score 0: normal, score +: mild to normal, score ++: 
mild (<25% of the total fields analyzed showed changes), 
score +++: moderate (<50% of the total fields analyzed 
showed changes), and score ++++: severe (< 75% of the 

HG-DMEM and kept at -80°C (18).

Preparation of Balanites aegyptiaca fruits aqueous ex-
tract

The coat epicarp of collected Balanites aegyptiaca 
fruits was carefully removed manually, and also the fruit's 
mesocarp was subsequently peeled with a cleaned, dried 
knife. The fleshy outer layer named the mesocarp then 
detached from the seeds. The dried mesocarp in the air 
was then ground with a coffee grinder in the laboratory. 
After that, it was kept in the refrigerator in a dry plastic 
container even after it was needed. Following the removal 
of seeds, one kilogram of dried fruit was submerged in 
distilled H2O for 24 hours (200 ml distilled H2O was used 
to extract 100-gram powder). This recently made filtrate 
passed freeze drying (utilizing Labcono, model 18, freeze 
dryer) to produce a thick dark brown extract. Prepared 
aqueous Balanites aegyptiaca fruit extract was injected 
orally by an oral gastric tube every day for four weeks at a 
dose of 80 mg/kg b. wt. (19).

Experimental animals
Seventy male adult albino rats were put in the experi-

mental animal house of Zagazig University's Faculty of 
Science, weighing 180 ± 200 grams. Rats were placed in 
a controlled setting with a 25°C temperature, 65% rela-
tive humidity, and a twelve-hour cycle of light and dark. 
The adult rats had unlimited access to commercial pellet 
rat chaw and tap water. The Zagazig University's Ethical 
Committee approved the handling of animals and study 
design (ZU-IACUC/1/F/80/2019).

Induction of diabetic nephropathy in rats
Induced diabetic nephropathy was induced intraperito-

neally with a single freshly prepared streptozotocin (STZ) 
injection (60 mg/kg b. wt., STZ) dissolved in (100 mM, 
pH = 4.5) cold citrate buffer in overnight-fasted adult rats 
following 15 minutes of intraperitoneal (i.p) nicotinamide 
injection (120 mg/kg body weight, NIC) dissolved in 0.9% 
(wt./v) sodium chloride. To prevent hypoglycemia, rats 
received an overnight 5% glucose solution after one hour 
of STZ and nicotinamide injection. Fasting blood sugar le-
vels were determined by utilizing a portable glucose meter 
for 72 hours following injection and on day seven. Diabe-
tic rats had fasting blood sugar levels higher than 250 mg/
dl(20). Compared with controls, substantial increases in 
serum creatinine and urea levels, as well as histological 
alterations, confirmed nephropathy in male adult albino 
rats at the end of the sixth week after induction. This study 
included rats with these significant values (21).

Experimental design
In this experiment, 70 rats were categorized into seven 

groups, each with ten rats. The groups were categorized 
as follows:

Group I: Negative control; normal rats.
Group II: Positive control; diabetic nephropathy group. 
Group III: Balanites treated group; diabetic nephropa-

thy was induced, and rats were treated with the prepared 
Balanites aegyptiaca fruit aqueous extract administered 
orally by an oral gastric tube at an 80 mg/kg body weight 
dose every day for four weeks (19).

Group IV:  Balanites + MSCs treated group; diabetic 
nephropathy was induced in rats, and they received prepa-
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total fields analyzed showed histopathological changes).

Statistical analysis 
Version 25 of the statistical package for social science 

(SPSS) (28) for Windows was used to code and enter 
the data. The mean and standard error (SE) were used to 
express quantitative data. A one-way analysis of variance 
(one-way ANOVA) was utilized for comparing quanti-
tative data from more than two groups. The significance 
level was set at a p-value of ≤ 0.05.

Results

Exosome characterization using transmission electron 
microscopy (TEM)

The ultracentrifugation technique was initially utilized 
to isolate exosomes from a cell culture medium. Nanove-
sicles were detected using transmission electron micros-
copy; however, the sizes of the individual EVs were hete-
rogeneous, with a typical diameter range of 30 to 150 nm, 
as shown in Figure 1.

Nanoparticle tracking analysis (NTA)
NTA is a technique for examining particles in liquids 

called nanoparticle tracking analysis that links Brownian 
motion rate to particle size. The size distribution profile of 
tiny particles with a diameter of roughly 10-1000 nano-
meters (nm) in liquid suspension can be determined using 
NTA. The sharpest size distribution curves for exosomes 
were 109 ± 1.77, which is consistent with transmission 
electron microscopy and suggests more uniform prepara-
tions, as shown in Figure 2.

Exosome concentration by BCA assay
A BCA protein assay kit was utilized for measuring the 

quantity of protein in the isolated exosomes, as in Table 1. 
In addition, the needed exosome concentration for western 
blot analysis and the dose for in vivo investigation were 
adjusted.

Characterization of exosome by Western blot using 
exosome–specific surface marker

Immunoblotting with antibodies specific to the exo-
some surface markers CD63 and CD81 confirmed that 
the MSC-isolated exosomes were exosomes. Through the 
production of exosome surface proteins, Western blot ana-
lysis demonstrated that the extracted EVs were abundant 
in exosomal marker proteins, supporting the exosomal cri-
teria. Beta-actin utilizes a housekeeping gene along with 
CD63 (55 KDa) and CD 81 (23 KDa), as shown in Figure 
3.

Exosome labeling and uptake
 To examine the capacity of exosomes to enter cells, 

EVs labeled with PKH26 were incubated for 90 minutes 
with cells maintained at 4°C or 37°C. Images of MSCs 
incubated at different temperatures revealed that cells 
cultured at 37°C had significantly higher fluorescence than 
those incubated at 4°C, as shown in Figure 4, denoting that 
EVs penetrated the cells.

Effect of the exosome, MSCs, and Balanites aegyptiaca 
on MDA and TAC in pancreatic tissue

TAC and MDA concentrations in the pancreatic tis-

Figure 1. Transmission electron micrograph of isolated exosomes 
using ultracentrifugation from MSC-conditioned media (Scale Bar = 
500 nm).

Figure 2. Size analyses of isolated exosomes; nanoparticle tracking 
analysis of exosomes.

Sample Number The concentration of exosomes 
(μg/ml)

1 494.00
2 440.67
3 350.67
4 494.00
5 440.67
6 350.67

Mean 428.44

Table 1. Concentration of exosomes expressed by μg/ml isolated 
from MSCs by BCA assay. 

Figure 3. Western blot analysis of exosomes shows the presence of 
CD 63 and CD 81 proteins.
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sue of all investigated groups are summarized in Table 2. 
MDA was markedly increased, while TAC was substan-
tially reduced in the diabetic nephropathy group compared 
to normal rats (P < 0.001). The undesirable elevation in 
pancreatic MDA level and reductions in pancreatic TAC 
level were markedly ameliorated in the group co-adminis-
tered Balanites aegyptiaca with MSCs or exosomes than 
in diabetic nephropathy rats (P < 0.001).

Histopathology
Normal pancreatic parenchyma and lobules with nor-

mal pancreatic acini and acinar cells were observed in the 
pancreas of normal rats (arrows) (HE X400) (lesion score: 
0) (Figure 5A). Conversely, the positive control group re-
vealed massive cortical necrosis; necrosis and disintegra-
tion of the glomerular tuft (arrow) led to the widening of 
the capsular spaces (*), (HE X 400) (lesion score: ++++) 
(Figure 5B). Diabetic nephropathy rats treated with both 
Balanites aegyptiaca and exosomes revealed the best re-
sults (Figure 5F). In contrast, other groups gradually re-
vealed some improvement in pancreatic tissue according 
to the lesion score: (Figures 5C- 5G).

Discussion

There has recently been an increase in concern regar-
ding the development of exosomes. Exosomes are natu-
ral nano-scale particles that possess numerous benefits. 

Groups MDA(nmol/g tissue) % change TAC (mM/L) % change P Value
Negative control group 108±2.1c --- 65.8±0.61c ---

< 0.001

Positive control group 179.8±5.2*** 66.48% 23.2±0.82*** -64.74%
Balanites treated group 113.4±1.4c -36.92% 38.8±0.24***c 67.24%
MSCS treated group 156.4±4.5***a -13.01% 33.2±0.24***c 43.10%
Exosome-treated group 157.2±2.4*** a -12.56% 47±0.86***c 102.58%
Balanites + MSCs treated group 82.4±2.1***c -54.17% 54.6±0.49***c 135.34%
Balanites + exosomes treated group 89.8±3.5*c -50.05% 80±2.8*c 244.82%

Table 2. Effect of exosome, MSCs, and Balanites aegyptiacae on MDA and TAC in pancreatic tissue of all investigated groups.

Values are expressed as mean ± SEM, n = 10. Various superscript letters for values represent significant differences (P<0.05). * P< 0.05 compared 
to control group, ** P< 0.01, *** P< 0.001 compared to control group. aP< 0.05, bP< 0.01, cP< 0.001 compared to positive control group. The 
percentage of change of positive control was calculated according to the negative control.

Figure 4. Fluorescence microscopy analysis of EV uptake by cells 
at different temperatures. Exosome uptake by cells was examined 
to show the ability of exosomes to enter the cells. Cells kept at 4°C 
or 37°C were incubated with PKH26-labeled EVs for 1.5 hours. In 
images of MSCs incubated at different temperatures, much more 
fluorescence was observed in cells incubated at 37°C, as shown in 
Figures 4A, B & C, than those at 4°C, as shown in Figures 4D, E 
& F demonstrating that EVs entered into the cells. The experiments 
were performed twice. In each experiment, cells on four cover slips 
(placed in 24-well plates) were treated under a particular condition. 
These are representative images. (H & E stain, magnification power 
= x400, scale bar = 50 µm).

Figure 5. Photomicrographs of pancreatic tissue of all groups investi-
gated: (A) Pancreas from the negative control group revealed normal 
pancreatic parenchyma; noted the normal pancreatic lobules with nor-
mal pancreatic acini and acinar cells (arrows) (lesion score 0). (B) The 
pancreas section from the positive control group revealed massive 
cortical necrosis; noted the necrosis and disintegration of glomerular 
tufts (arrow) leading to the widening of the capsular spaces (*) (le-
sion score ++++). (C) The pancreas from the Balanites treated group 
revealed dilatation and congestion in the interlobular and intralobular 
blood vessels (arrowhead) together with intralobular edema (*) (le-
sion score +++). (D) The pancreas from the Balanites + MSC treated 
group showed dilatation in the pancreatic duct (arrow) and hyperpla-
sia in the pancreatic Langerhans islets with nuclei and normal cells (*) 
(lesion score ++). (E) The pancreas from the MSC-treated group re-
vealed dilatation in the pancreatic duct (arrow) and hyperplasia in the 
pancreatic Langerhans islets with nuclei and normal cells (*) (lesion 
score +++). (F) The pancreas from the Balanites + exosome treated 
group revealed normal pancreatic parenchyma; the normal pancreatic 
lobules with normal pancreatic acini and acinar cells (arrows) (lesion 
score 0). (G) The exosome-treated group's pancreas revealed normal 
pancreatic parenchyma; noted the normal pancreatic lobules with nor-
mal pancreatic acini and acinar cells (arrows) (lesion score 0). (H & E 
stain, magnification power = x400, scale bar = 50 µm).
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In the last decade, exosome-related basic research and 
clinical studies have penetrated numerous medical spe-
cialties (29). Almost all cells can secrete exosomes, and 
different exosome types have different functions. A signi-
ficant subset of stem cells known as MSCs has attracted 
attention as a possible starting point for tissue engineering, 
cell therapy, and regenerative medicine studies. Therefore, 
research based on MSC exosomes offers a lot of signifi-
cance (30). In addition to producing significant amounts of 
anti-apoptotic substances such as insulin growth promoter 
(IGF-I), anti-inflammatory substances, interleukin (IL-6), 
and interleukin-1 receptor antagonist (IL-1Ra), MSCs also 
function in a paracrine manner in which they create unique 
exosomes and microvesicles (31).

Studies have demonstrated that MSCs function via their 
paracrine action, or how secreted EVs function. In particu-
lar, MSCs produce exosomes that may have a definite the-
rapeutic effect in disorders characterized by inflammation 
or tissue damage (32). Many exosome isolation techniques 
have limitations, including exosome preparation on a large 
scale, reduced scalability, poor reproducibility, expensive 
supplies and reagents, limitations on the capacity to create 
significant amounts of exosomes, and low recovery (33). 
Furthermore, differential centrifugation is the approach for 
exosomes most frequently utilized among all these tech-
niques because large-scale conditioned medium handling 
for exosome isolation is inexpensive and simple (34). In 
the current investigation, we attempted to identify exo-
some morphology, recognize exosomes secreted into an 
MSC-conditioned cell culture medium, and fully charac-
terize those exosomes. We purified exosomes from MSCs' 
conditioned medium using ultracentrifugation and used a 
BCA assay kit to perform a colorimetric analysis.          

The current study's findings are inconsistent with a 
prior study (35), which demonstrated that exosomes pro-
duced by ultracentrifugation from 1 million cells had a 
yield of 1.5 × 108 particles and a relatively low protein 
concentration level of 3 μg for their function in Alzhei-
mer's disease. Isolated vesicles were primarily 175 nm in 
size. Nevertheless, another study (33) demonstrated that 
crude exosomes extracted by ultracentrifugation might be 
further purified on a sucrose gradient, thereby removing 
potential impurities. 

In general, the presence of exosomes was assessed 
using Western blot analysis, TEM, and NTA. Nanopar-
ticle tracking analysis, which measures the yield of exo-
somes and size, is one of the fundamental characterization 
methods used for exosome detection. Western blotting can 
also be utilized to determine exosome-specific markers. 
Exosome identification markers include TSG101, Alix, 
syntenin-1, Hsp90, Hsp70, flotillin-1, LAMP2, cofilin, 
and Tetraspanins (CD9, CD63, and CD81) (36). Exosomes 
derived from BMSCs are homogeneous in size with a 30 
to 100 nm diameter range and have a cup-shaped morpho-
logy with definite and visible boundaries (37). Our TEM 
observation demonstrated the presence of nano-vesicles, 
and the sizes of individual EVs varied according to elec-
tron microscopy using ranges of average diameter from 
30-150 nm. The center of exosomal vesicles generally has 
a divot, probably because the sample preparation for TEM 
requires drying.

The total concentration and size of vesicles can be 
determined using NTA. However, it is insufficient to dis-
tinguish between biological and synthetic nanoparticles 

(38). In addition to determining the hydrodynamic size of 
undamaged vesicles, NTA eliminates the need for sample 
preparation that can alter exosome morphology. By quan-
tifying the difference in concentration between healthy 
and diseased/inflammatory conditions, it may be possible 
to more fully utilize NTA's ability to predict the size and 
concentration of EVs as well as their subtypes (exosomes) 
(39). According to our NTA findings, preparations with 
sharper size distribution curves were more homogeneous.

Since exosomes contain unique markers from their pa-
rent cell, they might have characteristics similar to those 
originating from them. These markers are utilized for the-
rapeutic and diagnostic purposes, yet they have proven 
to be a double-edged sword (40). Due to its simplicity, 
accessibility, and capacity to identify both exosomal sur-
face proteins and interior proteins, Western blotting is the 
method most frequently employed to detect target proteins 
linked with EVs (41). Tetraspanins CD9, CD63, and CD81 
are surface markers prevalent in both MVs and exosomes, 
complicating their usage as exosome biomarkers (42). 

The samples isolated using ultracentrifugation tech-
niques were significantly enriched for exosome markers. 
All exosome preparations contained both the transmem-
brane protein (CD63) and the cytosolic protein (TSG101). 
On the contrary, the other transmembrane protein (CD9) 
was only detected in exosomes isolated using ultracentri-
fugation. It was not present in exosomes acquired through 
the Total Exosomes Isolation Reagent (TEI) and Exo-
Quick kits (43). It is preferable to compare the composi-
tion of EVs to that of the secreting cells. Exosomes obtai-
ned using ultracentrifugation were more enriched in EV 
components than the originating cells (CD9 and TSG101) 
or even more enriched (CD63 and CD9). The weak bands 
were observed in cell culture media, indicating that the su-
pernatant contained substantial amounts of the remaining 
EVs 70 minutes after ultracentrifugation (44). 

After injection, STZ quickly reaches the pancreatic 
beta cells and breaks DNA strands (45,46). By eleva-
ting the production of H2O2, STZ causes the production 
of ROS, which in turn causes DNA fragmentation in the 
pancreatic β-cell islets (47). Blood glucose levels rise in 
conjunction with changes to the damaged pancreatic islets 
led on by the onset of diabetes (48). Nicotinamide lessens 
the severity of diabetes in rats induced by STZ owing to 
its antioxidant action (49,50). As a result, a type II diabetes 
model produced by STZ-nicotinamide was used for this 
investigation. Excessive ROS generation can be stimula-
ted by a high glucose environment and lead to DN (51). 
Malondialdehyde, a byproduct of the lipid peroxidation 
reaction, can be utilized as a biomarker to determine levels 
of oxidative stress. MDA is increased in conditions that 
cause oxidative stress, such as diabetes mellitus (52).

 This study revealed that the combination of Balanites 
aegyptiaca with exosomes had significantly higher ne-
phroprotective and anti-diabetic effects than either alone. 
To our knowledge, this is the first report to investigate this 
combination's nephroprotective and anti-diabetic proper-
ties. Malondialdehyde concentrations in the pancreatic tis-
sue of diabetic nephropathy rats were significantly higher 
than those of normal rats. At the same time, groups co-ad-
ministered Balanites aegyptiaca with exosomes or MSCs 
demonstrated a substantial decrease in malondialdehyde 
concentrations compared to diabetic nephropathy rats. 
The levels of TAC in the pancreatic tissue of the diabetic 
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nephropathy rats were significantly decreased compared 
to normal rats.

In contrast, groups co-administered Balanites aegyp-
tiaca with exosome or MSCs demonstrated a considerable 
increase in TAC levels compared to diabetic nephropa-
thy rats. The fruit mesocarp of Balanites aegyptiaca is 
frequently utilized as an oral diabetic treatment in Egyp-
tian folk medicine (53). Balanites aegyptiaca extract has a 
hypoglycemic action mediated by insulin-mimetic action 
(54), enhanced sensitivity for insulin receptors, potentia-
tion and stimulation of insulin secretion (55), inhibition 
of intestinal glucosidase activity, acceleration of glucose 
metabolism, suppression of hepatic gluconeogenesis, and 
improved hepatic glycogen storage (56).

Since only 1% of MSCs can access the desired tissue, 
and data suggest that MSCs developed into target cells 
are deficient, MSCs now use paracrine activity rather than 
proliferative potential to heal damaged tissue (57). One of 
the most crucial methods for paracrine regulation is using 
exosomes. Prior research revealed that exosomes are supe-
rior MSC replacements and are crucial for repairing oxi-
dative damage to the liver and repairing injured organs or 
tissues by releasing bioactive molecules like Wnt4 (58). 
Exosomes secreted by bone marrow stem cells can alle-
viate the nephropathy and cognitive impairment caused by 
diabetes (59). MSCs may repair cisplatin-damaged proxi-
mal tubular cells owing to the simultaneous trophic action 
of insulin-like growth factor 1 secreted by bone marrow-
MSCs and the transmission of the mRNA of the appro-
priate IGF-1 receptor using exosomes (60). MSC-ex may 
be necessary for preventing autoimmune targeting of the 
pancreatic islets in T1DM patients and slowing the disease 
progression (61).

The current study revealed that ultracentrifugation is 
the most popular technique for isolating exosomes. Exo-
somes may be nanoparticles that contain bioactive mole-
cules that reflect an individual's physiological status, regu-
late metabolism, and repair impaired tissues. In addition, 
it demonstrated that Balanites aegyptiaca and exosomes 
have synergistic benefits for each other and have more 
potent renoprotective and anti-diabetic effects in rats with 
diabetic nephropathy.
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