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Introduction

Prostate cancer (PC) is one of the most common causes 
of cancer-associated death among men in developed as 
well as developing countries (1, 2, 3, 4, 5). Among all new 
cancers diagnosed in the United States in 2020, PC is pre-
dicted to make up nearly one-fifth of the total cancer cases 
(4, 6). Similarly, in other parts of the world, including 
Asian and Middle Eastern countries, the incidence of the 
disease has been on the rise due to significant changes in 
lifestyle (7, 8). PC shows a very high degree of heritability, 
and epidemiological evidence coming from various study 
designs (twin, family-based, case-control cohort, etc.) sup-
ports the key contributing role of genes in the etiology of 
PC (9,10, 11, 12). Twin studies have shown a higher risk of 
developing PC for monozygotic twins than for dizygotic 
twins when one is diagnosed with PC, thus stressing the 
role of genetic factors (12). Risk factors like age, ethnicity 
and positive family history are major determinants of the 
predisposition to PC (13, 14). For example, compared to 
men of European Americans, the incidence of PC among 
African American (AA) and Asian Indian men is higher 
(15). The incidence and mortality rates for PC are strongly 
associated with age (16). First-degree relatives of patients 
with PC have a much higher risk of developing the dis-
ease compared to the general population (17). Similarly, 
the risk to first-degree relatives of patients under the age 
of 60 years with PC is >4-fold higher than to those without 
a family history (18). To a lesser degree, factors like diet 
and lifestyle choices, such as smoking, physical activity, 
etc. have also been implicated in to the risk for PC devel-

opment (19, 20). 
The genetic component that contributes to the etiol-

ogy of PC comprises rare variants with moderate- to high 
penetrance and common variants with low penetrance (2). 
The rare variants with moderate- to high penetrance have 
been largely identified through candidate gene approach-
es or linkage studies in hereditary and familial cases of 
PC, whereas GWAS were frequently utilized to identify 
low-risk common genetic variants located in multiple loci 
throughout the genome of a population (Figure 1). The 
identification of genetic variants that can be effectively 
used to predict PC risk with very high confidence has re-
mained difficult due to the heterogeneity involved in PC. 
Although the prostate-specific antigen (PSA) test is still a 
standard test for the early detection of PC (21), however, 
it lacks sensitivity and specificity (22). Furthermore, PSA 
is not a marker of PC but only a prostate-specific marker 
(22), thus underlining the need to identify novel biomar-
kers and molecular targets for the diagnosis, monitoring, 
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Figure 1. Risk factors for prostate cancer, and approaches for iden-
tifying risk loci and genetic variants associated with prostate cancer 
susceptibility.
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and treatment of the disease (23).
In the present review, we discuss the PC candidate 

genes, PC susceptible loci found by linkage analysis in fa-
mily-based settings, and GWAS-identified PC susceptible 
loci and genetic variants in population-based settings.

Family-based linkage studies and candidate gene ap-
proach

The early research into the identification of high pene-
trant PC susceptible loci was done through linkage stu-
dies in hereditary PC cases. A large number of such stu-
dies were performed on populations of European descent. 
PC susceptibility loci obtained from linkage studies were 
found to be located on chromosomal regions like 1q24-25 
(HPC1) (24, 25, 26), 1q42-43 (PCAP) (26, 27), Xq27-28 
(HPCX) (28), 1p36 (CAPB) (26, 27), 20q13 (HPC20) (29), 
17q21 (HOXB13) (30, 31), etc. Similarly, linkage studies 
in families of non-European descent also have identified 
hereditary PC susceptibility loci, namely, 1p36, 1q24-
25, 1q42.2-43, 2p16, 2p21, 11q22, 12q24, 17p11, 22q12, 
Xq21 and Xq27-28 in African American families (32, 33, 
and 34) and 1p36 in Japanese families (35). Later, fine-
mapping of these regions was undertaken for the identi-
fication of candidate genes and biological pathways that 
play important roles in the etiology of PC. The candidate 
gene approach involves examining single nucleotide poly-
morphisms (SNPs) within genes that have already been 
known to be associated with a specific trait or disease. In 
the hereditary/familial PC context, several moderate- to 
high-penetrant susceptibility genes have been proposed. 
Genes belonging to DNA repair, steroid hormone metabo-
lism, carcinogen metabolism, inflammation, and transcrip-
tion have been proposed as candidate genes for PC.

HOXB13 is one such gene that has emerged as the most 
widely replicated susceptibility gene for PC risk. A ger-
mline missense mutation G84E in the HOXB13 gene was 
found in PC families after the screening of hundreds of 
genes in the region 17q21-22, previously identified in PC 
linkage studies (36). HOXB13 is a homeobox transcription 
factor that interacts with the androgen receptor and plays 
an important role in the growth and differentiation of nor-
mal and cancerous prostate cells (37). Recently, HOXB13 
was recommended by a consensus conference on PC to be 
included in the panel of genetic testing for suspected here-
ditary PC (38). Nyberg and group (2019), in a recent meta-
analysis study of the PC risk attributed to the HOXB13 
G84E mutation, concluded that the risk of developing 
PC is in the carrier of this mutation. The presence of the 
G84E mutation has been reported exclusively in European 
men, thus suggesting a founder effect (39). Other germline 
mutations in HOXB13 have also been reported in different 
ethnic groups (40, 41, and 42). 

Germline alterations in the tumor suppressor genes 
BRCA1 and BRCA2 have also been associated with an 
increased risk of PC. The BRCA1- and BRCA2-encoded 
proteins ascertain genome integrity by playing significant 
roles in the homologous recombination-mediated DNA 
repair pathway. In comparison to BRCA2 mutations that 
have been reported to result in up to a 5-fold increase in the 
risk of PC development in the carrier (43, 44), the risk of 
PC due to a BRCA1 variant is found to be less pronounced 
with 1.8-fold to 3.8-fold increase in the relative risk of PC 
diagnosis by the age of 65 years (45, 46). A recent meta-
analysis on the association between BRCA mutations and 

PC risk reported a higher risk of PC for BRCA2 carriers 
(2.64-fold) than for BRCA1 carriers (1.35-fold) (47). The 
lifetime risk of PC at the age of 80 years in the current 
study was reported to be between 19–61% for BRCA2 and 
7–26% for BRCA1 carriers (48). Similar to the BRCA1 
and BRCA2, variants in other DNA-repair genes, such 
as ATM, DNA mismatch repair, or MMR genes (MLH1, 
MLH3, MSH2, MSH6), RAD51C, and CHEK2 have also 
been associated with PC risk (49, 50). Despite the efforts 
of several studies, the candidate gene approach has been 
criticized for its lack of replication and lack of statistical 
power due to a smaller sample size (51, 52). Furthermore, 
a family gene accounts for only part of the familial cases 
because an individual in the PC family can develop the 
disease even in the absence of such germline variants 
(53). Therefore, the majority of such findings are failed to 
evolve into recommended genetic testing in clinical prac-
tice for the prediction of PC development. Furthermore, 
the lack of conclusive findings from family-based linkage 
studies and candidate gene approaches indicate interplay 
of multiple genes for PC susceptibility. The identification 
of common loci with low penetrability that predisposes to 
PC and can explain not only sporadic PC but also fami-
lial PC which is highly desirable and remains the focus of 
many genome-wide association studies (GWAS) (54).

Genome-Wide Association Studies (GWAS)
Whereas linkage studies identify rare genetic variants 

with moderate- to high penetrance, GWAS can identify 
common genetic variants with low penetrance. The results 
of GWAS showed that the majority of the genetic variants 
associated with PC are located in nonprotein coding re-
gions such as the regulatory regions of genes and RNA-co-
ding regions in the genome (55, 56). More than 200 com-
mon variants have been identified as PC risk by GWAS 
(57). Figure 2 illustrates the distribution described in PC 
susceptibility.

Figure 2. PC risk loci identified by Genome-wide association studies 
(GWAS). The loci associated with PC risk are represented by circles 
on different human chromosomes. The data for PC risk loci were ob-
tained from Al Olama et al. (2014) and Schumacher et al. (2018) and 
plotted using PhenoGram software available online at http://visualiza-
tion.ritchielab.org/phenograms/plot.
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looping with oncogene SOX9 (78).
Several genetic variants in the region 19q13 have 

been reported to be associated with PC risk in GWAS. 
The authors conducted the first GWAS in Han Chinese 
(4484 with PC cases and 8934 controls). The authors iden-
tified the variant rs103294, located within the leukocyte 
immunoglobulin-like receptor (LIR) gene, contributing to 
PC risk on 1the 9q13.4 region and found the risk allele 
rs103294[C] to be associated with increased expression of 
LILRA3, a family member of LIR genes known to regulate 
inflammatory response (79).

The authors performed GWAS in Japanese men (4584 
with PC and 8801 controls) and identified five new loci 
including 6p21 (rs1983891 in FOXP4) for PC susceptibil-
ity (80). The variant rs1983891 at 6p21 was later also as-
sociated with PC risk in European men in a fine-mapping 
study among men of European ancestry (81). 

The authors conducted a GWAS for PC on more than 
23,000 Icelandic men and identified common variants, 
rs5945572 on Xp11.22 and rs721048 on 2p15, associated 
with PC (73). The variant rs5945572 has been mapped 
upstream of NUDT11 gene and was further validated in 
AA population (82), and in multi-ethnic cohort (AA, Eu-
ropean American, Japanese American, Latinos, and Native 
Hawaiians) (83). 

Recently, in a meta-analysis of GWAS, two novel PC 
susceptibility loci, 13q34 and 22q12, were reported in men 
of African ancestry (63). Takata and colleagues (2019) 
identified 12 new susceptible loci for PC in the Japanese 
population. These loci were found to be located on differ-
ent chromosomes (1, 2, 3, 8, 10, 12, 15, 20, 22, and X), 
and most of the loci were also predicted to gene regulatory 
functions (84). 

In spite of the discovery of common loci for PC risk, 
there are very few genetic variants that have been identi-
fied by GWAS to be associated with PC aggressiveness. 
In a multistage, case-only GWAS of 12,518 PC cases, 
two new loci, rs35148638 at 5q14.3 and rs78943174 at 
3q26.31, were identified and found to be associated with 
PC aggressiveness as measured by the Gleason score (85). 
Similarly, identified a novel variant, rs9623117 at 22q13, 
in two GWAS and reported its association with the aggres-
sive PC risk. Other GWAS-identified loci associated with 
PC aggressiveness have been reviewed (86).

Challenges and future perspective
Prostate cancer is a heterogeneous disease and gene-

tics has an essential role in its etiology. The advancement 
in genetic technology and the continuing reduction of 
sequencing costs have shifted the focus from family-based 
linkage analysis to population-based association studies 
that can identify common variants of PC predisposition.

Although GWAS has identified many risk variants and 
risk loci for PC, being located on non- coding regions has 
made their biological interpretation in the etiology of PC 
difficult and uncertain. This provides impetus for research 
into the functional studies of identified genetic variants, so 
that the underlying networks of genes and signaling pa-
thways involved in PC can be elucidated and novel targets 
for the treatment of PC can be emerged. 

Secondly, most of the studies for the identification 
of genetic variants for PC have been done on European 
populations. This can hamper the genetic risk prediction 
for PC across the global populations. The generalizability 

The 8q24 region of the chromosome has emerged as 
one of the most common risk loci associated with PC in 
multiple populations, such as European, African, African 
American, Asian, Latinos, etc. This region was first identi-
fied in Icelandic population in a GWAS analysis (58). Au-
thors further replicated the study in the AA population and 
found that the variant at locus 8q24 confers higher risk of 
PC for AA men than for men of European ancestry (58). 
Unlike many other PC susceptible loci that have failed to 
be replicated, the 8q24 region has been successfully asso-
ciated with PC in many populations by both recent GWAS 
and meta-analyses of GWAS (59, 60, 61, and 62). The 
8q24 region has been found to harbour many risk variants 
predisposing to PC. In a meta-analysis and case-control 
study performed by Cheng and collaborators (2008), three 
variants (rs10090154, rs16901979, and rs6983267) on 
8q24 regions were found to be positively associated with 
advanced PC. The variant rs72725854 (A>G/T) at locus 
8q24 has been reported to contribute to an increased risk 
for PC development in men of African ancestry (63, 64). 
Although the PC-susceptibility region within 8q24 is not 
known to possess protein-coding genes, the presence with-
in it of regulatory elements that regulate the expression of 
neighboring genes, such as C-MYC, has been reported. For 
example, the risk variant rs72725854 has recently been 
shown to harbor an enhancer that can regulate the tran-
scription of long noncoding RNAs (lncRNAs) and MYC 
in the 8q24 region via 3D-conformation (65). 

The 10q11 region is another chromosomal region that 
has gained prominence for possessing genetic variants as-
sociated with PC risk (66, 67). The association of variants 
on 10q11 with PC was replicated in different populations 
such as South African (68), Romanian (69), African Ame-
rican (70), etc. RA report in the Latino population the 
10q11 region is the most significant risk region for PC, 
surpassing the risk associated with the 8q24 region. These 
authors replicated the findings of other GWAS (71) by 
reporting a significant association between the risk variant 
rs10993994, located upstream of MSMB at 10q11, and PC 
risk. The variant rs10993994 is located outside the protein-
coding region and found to contribute to PC risk by affec-
ting the expression of nearby genes MSMB and NCOA4 
(72). Kim and collaborators (2015) found three additional 
genetic variants rs7077830, rs2611489, and rs4631830 on 
10q11 to be associated with PC risk in the Korean popu-
lation. The variants at 10q11 have been associated with 
serum PSA levels in men (73).

The 17q12 is another region that has been implicated as 
PC susceptibility loci by many studies. Two genetic vari-
ants, rs7501939 and rs3760511, on 17q12 were found to 
be associated with PC risk in the GWAS of 1501 Icelandic 
men with PC and 11,290 controls (74). The 17q12 region 
was later also replicated in UK (66) and USA in separate 
GWAS. The genetic variant rs4430796 located within 
HNF1B gene on 17q12 has been found to be strongly as-
sociated with the PC risk in a fine-mapping study (75). 
17q12 region contains genes that have been searched for 
PC association (76). 

PC susceptibility locus at 17q24 has also been pin-
pointed as another risk loci. In a recent meta-analysis of 
association of the variant rs1859962 with the risk of PC 
development, the authors found the rs1859962 [G] allele 
to be significantly associated with the risk of PC (77). The 
variant rs1859962 has been mapped to enhancer elements 
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of these variants in a diverse racial and ethnic population 
by validation studies is much needed before risk loci can 
be utilized in PC risk modeling. The individual is gene-
rally contributing only a small fraction for the risk of PC 
development and thus cannot be successfully used to pre-
dict the overall risk of PC in an individual. Polygenic risk 
scores (PRS) that combine the risk scores of many such 
genetic variants identified in multiple studies have been 
developed for the stratification of susceptibility to PC. The 
PRS for PC screening can supplement the drawbacks of 
PSA testing. However, the use of PRS obtained from one 
type of population (e.g., European) for the prediction of 
PC risk in the other under-represented populations is the 
limiting factor for its worldwide usage (87). Despite much 
effort, genetic testing for PC susceptibility falls behind 
other common cancers, like colorectal and breast cancer.

Conclusions
Prostate cancer is heterogeneous sickness and genetics has 
a crucial position in its etiology. The development in gene-
tic era and the persevering with discount of sequencing 
expenses has shifted the focal point from family-primarily 
based totally linkage evaluation to population-primarily 
based totally affiliation research that may become aware of 
not unusual place versions of PC predisposition. Similarly, 
although a number of loci have been identified by GWAS, 
the genetic variants that discriminate between aggressive 
and non-aggressive forms of PC are very much desirable 
because most of the death in PC cases is due to metastatic 
castration-resistant prostate cancer (a form of advanced 
PC). The present review discusses candidate gene and 
family-based linkage studies, each antecedently stylish for 
the identification of genetic markers for PC. Furthermore, 
the foremost a part of the review focuses on important PC 
loci and risk variants known by population-based genome-
wide association studies (GWAS). Thus, there are vast 
opportunities for future replication and validation studies 
in other populations to elucidate a clear picture of genetic 
biomarkers involved in PC etiology that can pave the way 
for the development of individualized screening and pre-
vention strategies. 
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