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Introduction

Stem cell therapy is becoming more credible in 
treating degenerative diseases compared to conventional 
medicine (1). Mesenchymal stem cells (MSCs) represent 
an attractive avenue in the cell therapy field targeting 
many degenerative and chronic diseases. Human MSCs 
exert their therapeutic effects through direct multi-lineage 
differentiation or indirectly by secreting paracrine factors 
(2). The use of MSCs for tissue regeneration is under 
extensive investigation worldwide. MSCs can be obtained 
from adult tissues such as bone marrow, adipose tissue, 
skeletal muscle, dental pulp and umbilical cord (3) and they 
can be isolated, expanded in culture, and characterized in 
vitro (4) and in vivo (5).

Numerous in vitro and in vivo studies have been 
conducted in the last two decades to observe the complex 
environmental factors that affect MSCs maintenance and 
survival. Several studies showed that controlling oxygen 
partial pressure in vitro by reducing atmospheric oxygen 
from 20% to moderate hypoxic levels (usually 2–9% O2 
concentration) influenced the MSCs behavior positively 
(6). MSCs are normally found within niches where the 
oxygen gradient is around 6-7% O2 (moderate hypoxic 
condition) (7). For example, hypoxic condition within 
the bone marrow enhances the proliferation of MSCs and 
elucidates protection against senescence and apoptosis 
(8,9). Furthermore, it has been reported that maintaining 
MSCs in an undifferentiated state may require a moderate 
hypoxic environment primarily. On the other hand, 
several studies showed that severe hypoxia (less than 
1% O2) reduces proliferation of MSCs and induces their 
senescence and apoptosis. (10–12) 

Despite the imposing potential of MSC-based therapy, 
several obstacles have been encountered (13), including, 
the poor viability of MSCs after cell transplantation (14). 
The absence of proper adhesion with the surroundings is 
probably one of the major causes of poor MSCs survival 
after transplantation. Cell-cell adhesion through the 
extracellular matrix is critical to maintaining major cell 
activities, proliferation, and survival (15), whereas, a low 
propensity to adhere to the host cells due to a loss of matrix 
anchorage may induce the death of the transplanted MSCs. 

In this work, we assessed the level of the following 
major adhesion factors: stromal-derived factor 1 alpha 
(SDF1-α), C-X-C chemokine receptor type 4 (CXCR4), 
focal adhesion kinase (FAK), vascular endothelial growth 
factor (VEGF) and intercellular adhesion molecule 1 
(ICAM-1) in human MSCs under normoxia (21% O2) 
and severe hypoxia (0.5% O2) and its association with the 
ability of MSCs to survive under severe hypoxia stress.

Materials and Methods

Culturing of human BM-MSCs 
Human Bone Marrow MSCs (hMSCs) were 

commercially purchased from ATCC (Cat# PCS-500-012) 
and expanded using Dulbecco’s Modified Eagle’s Medium 
(DMEM) supplemented with 10% fetal bovine serum 
(FBS) (16), 0.1 mg/ml streptomycin and 100 units/ml 
penicillin G. Medium was changed every 48 hrs and cells 
were sub-cultured when confluence exceeded 60%. For 
normoxia, hMSCs were cultured in standard cell culture 
incubators (5% CO2/95% air; 37 °C). For hypoxia, hMSCs 
were cultured at either 0.5% O2 (5% CO2/remaining N2; 
37 °C) using a dedicated hypoxia station (HypOxystation 
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H35, HypOxygen, Frederick, MD, USA). For all assays, 
P3-P5 hMSCs were used.

Cell viability Assay
The viability of hMSCs under normoxia and severe 

hypoxia were assessed using Calcein AM Assay Kit 
( Abcam, Cat# ab228556). Fluorescent intensity was 
measured at Ex/Em = 485/530 nm. The measured 
fluorescence intensity is proportional to the number of 
viable cells. Fluorescent images were also captured using 
Cytation 5 (BioTek, USA).

Quantitative Elisa assays
We seeded the hMSCs cells in two 6-well plates and the 

cells were allowed to grow until confluency.  The next day 
we exposed one plate to severe hypoxia (0.5% O2) while 
the other plate was kept under normoxic conditions.  After 
24 hours, we collected the hMSCs culture supernatant 
and spun them for 15 minutes at 1500xg to get rid of the 
debris. We measured the levels of the following markers 
using ELISA kits; SDF1-α (R&D system, Cat # DSA00), 
CXCR4 (Abcam, Cat# ab287804), FAK (MyBioSource, 
Cat # MBS2515396), VEGF (R&D system, Cat # DVE00) 
and ICAM-1(R&D system, Cat # DCD540). Absorbance 
was measured according to each kit protocol and the 
concentrations were calculated by applying the sample 
absorbance to the standard curve equation.

Statistical analysis
Data are presented as the mean ±standard deviation. 

Differences between the groups were analyzed using 
student’s t-test and P< 0.05 was considered statistically 
significant.

Results

Severe hypoxia decreases the viability of hMSCs
The viability of hMSCs was assessed under normoxia 

and severe hypoxia (0.5% O2) using immunostaining 
with calcein AM, then measuring the fluorescent intensity 
(Figure 1). It was noted that the viability of MSCs under 
normoxia is well maintained compared to severe hypoxia 
where the viability is dropped remarkably (Fig 1 A& B). 

Severe hypoxia is associated with a less attached 
number of cells and decreases the cell-cell contact

hMSCs showed a reduction in cell viability under 
severe hypoxia in comparison to normoxia. To see the 
effect of poor viability on hMSCs cell-cell distance, 
bright field microscopic images were taken (Fig 2A). The 
images showed that the MSCs cell-cell adhesion distance 
increased under severe hypoxia compared to normoxia 
where cells were attached close to each other (Fig 2B).

The results depicted reduced attachment between 
adjacent hMSCs under severe hypoxic tension compared 
to normoxia conditions. This observation prompted us 
to continue investigating the expression and secretion 
of major adhesion molecules and chemokines: SDF1-α, 
CXCR-4, FAK, VEGF, and ICAM-1in hMSCs under 
normoxia and severe hypoxia.

Severe hypoxia decreases the level of major adhesion 
and migration factors

Stromal-derived factor-1 (SDF-1) is a chemokine 

involved in the homing and recruitment of hMSCs to the 
site of injury and directing their migration. SDF-1 binds 
CXCR4 and the SDF-1/CXCR4 axis plays an important 
role in the regulation of stem cell homing and trafficking 
(17). 

Our results showed a significant reduction in the levels 
of both SDF-1 and CXCR4 markers in hMSCs under 
severe hypoxia compared to normal oxygen levels.

We further investigated the levels of three major 
adhesion factors; focal adhesion kinase (FAK), vascular 
endothelial growth factor (VEGF), and intercellular 
adhesion molecule-1 (ICAM-1).

FAK is a non-receptor tyrosine kinase that binds 
integrins to regulate cell adhesion and migration in various 
cell lines. VEGF is one of the major factors that facilitate 

Figure 1. Exposure to severe hypoxia reduces the viability of 
hMSCs. (A &B)  Calcein AM viability staining of hMSCs after expo-
sure to normoxia and severe hypoxia (0.5% O2). The fluorescent in-
tensity was measured using Image J, which revealed a reduction in the 
viability of hMSCs under severe hypoxia in comparison to normoxia; 
n=4.* P < 0.05 compared to normoxic hMSCs.

Figure 2. Bright field images of hMSCs attachment under mode-
rate and severe hypoxia. (A)  Bright-field microscopic images of 
hMSCs after their treatment with normoxia and severe hypoxia (0.5% 
O2). The images show that the cells are firmly attached to each other in 
normoxia, while it appeared that hMSCs are far-off and less attached 
in severe hypoxia. (B) The distance between hMSCs was measured 
using Image J, the results showed noticeable increase in the distance 
between hMSCs exposed to severe hypoxia vs. hMSCs under nor-
moxia; n=4. * P < 0.05 compared to normoxic hMSCs.
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compared to normal oxygen levels. Moreover, cell-cell 
distance and the number of cells were significantly lower 
under severe hypoxia compared to normoxia. 

Hypoxia does not have a strict definition in terms 
of oxygen tension and it depends on cell type and 
physiological conditions. However,  many defined hypoxia 
as the critical oxygen tension that would permit cell 
viability and function (22). Hypoxic conditions enhance 
cell proliferation, and culturing under hypoxia could be an 
alternative approach without the need for extra additives to 
stimulate primary culture growth and expansion, yielding 
a sufficient number of cells to be used for transplantation 
(23). Hypoxia tension is an important component of the 
stem-cell niche and provides conducive signals to maintain 
stem cells cellular functions (24). Moderate hypoxia 
enhances the proliferation and the expansion of MSCs 
approximately six- to seven-fold (25). Priming MSCs 
with moderate hypoxia has been reported to increase the 
adhesion and migration of MSCs after their engraftment 
(26). On the other hand, no study so far investigated the 
effect of severe hypoxia (0.5% O2) on MSCs adhesion and 
migration. MSCs can face severe hypoxia in many serious 
diseases mainly acute myocardial infarction leading to 
their poor survival (27). One of the most important factors 
that are required to enhance the survival and success rate 
of MSCs transplantation is the adhesion and integration of 
MSCs at the host site (28).  So it is important to investigate 
the effect of severe hypoxia (0.5% O2) on the adhesion and 
homing properties of MSCs. Many studies showed that 
hypoxia lower than 1% is not a suitable microenvironment 
to support hMSCs proliferation and growth. Moreover, our 
study showed that severe hypoxia disturbed the levels of 
major adhesion and migratory factors that can decrease the 
chance to survive at the host site. 

SDF-1 is an alpha-chemokine that binds the 
transmembrane domain of the G protein-coupled receptor 
CXCR4 (29,30).  The SDF-1/CXCR4 axis stimulates major 
signaling pathways that are required for the adhesion and 
migration of MSCs, including FAK, PI3K, MAPK/Erk 
kinase (MEK), and Jak/Tyk2 (31). It has been reported that 
the downregulation of CXCR4 on the surface of MSCs 
underlined the inefficient homing abilities of MSCs toward 
damaged tissues, which results in poor MSCs curative 
effects (32). Moreover, CXCR4 was found to enhance the 
chemotactic and paracrine therapeutic characteristics of 
MSCs (32).  Our study showed that the levels of SDF-1 
and CXCR4 dropped hugely in MSCs after being exposed 
to severe hypoxia. 

Studies showed that FAK plays a significant role in 
the regulation of cell survival, adhesion, migration, and 
differentiation in mammalian cells including bone marrow 
stem cells (33–36). FAK  acts as a signal adaptor that 
interplays with and activates multiple signal transduction 
pathways that mediate cellular apoptosis, mobility and 
differentiation (37,38). Several reports showed that FAK 
can also potentiate the immunosuppression properties of 
MSCs (39).

VEGF is a potent angiogenic factor and is essential 
for the survival of many cells (40). VEGF regulates the 
adhesion of the MSCs by increasing the levels of FAK 
and integrins (41). It also induces the mobilization of bone 
marrow-derived MSCs to the injury site and enhances 
their targeted differentiation (42).

Several studies reported the beneficial role of ICAM-

adhesion and cell-cell contact which is crucial for the 
survival and growth of many cells including MSCs. VEGF 
increases endothelial permeability and induces the release 
of adhesion molecules mainly FAK and integrin-β1 that 
are essential for the incorporation of cells at the host site. 
ICAM-1 is a member of the immunoglobulin superfamily 
of adhesion molecules that is involved in cell-cell and cell-
matrix interactions. Moreover, ICAM-1 has a foremost 
function in MSCs adhesion and attachment at the host tissue 
surroundings after transplantation. Our results showed that 
the levels of FAK, VEGF, and ICAM-1 in MSCs decrease 
significantly under severe hypoxia compared to normoxia 
(Fig 3). The low levels of above mentioned migratory and 
adhesion factors in MSCs after being exposed to severe 
hypoxia can affect their survival and regenerative abilities. 
This can explain the poor survival of MSCs in hypoxic 
microenvironments such as ischemic heart diseases.

Discussion

It is widely known that MSCs in the bone marrow 
are located within a niche with low oxygen tension (5-
7% O2), which means that moderate hypoxia plays an 
important role in maintaining MSCs fate, self-renewal and 
multipotency (18,19). Moreover, in vitro studies found that 
the permanent culture of MSCs under moderate hypoxia 
(2.5%-15% O2) enhanced the influence of multiple genetic 
pathways that maintained the cells undifferentiated and 
multipotent (18,20). Also, under moderate hypoxia, many 
desirable functional changes of MSC were reported, 
including increased secretion of molecules like vascular 
endothelial growth factor (VEGF) and interleukin-6 (IL-
6), as well as mobilization and homing by the induction 
of stromal cell-derived factor-1 expression  (SDF-1) (21). 
On the other hand, severe hypoxia inhibits MSC functions 
by suppressing the differentiation potential of MSCs and 
inducing their senescence and apoptosis (10). Together, 
these findings further substantiate that the oxygen tensions 
contribute strongly to the regulation of MSCs cellular 
functions and fate.

In this study, we analyzed the in vitro response of 
hMSCs to hypoxic preconditioning at 0.5% oxygen 
concentration. We observed that the hMSCs viability 
significantly decreased in severe hypoxia conditions 

Figure 3. The concentration of major adhesion and migration 
factors analyzed by quantitative Elisa assay. The results showed a 
significant decrease in the levels of major adhesion and migration fac-
tors in hMSCs that were exposed to severe hypoxia weighed against 
normoxia. * P < 0.05 compared with the control group.
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1 in MSCs. ICAM-1 has the ability to increase the 
immunosuppression capacity of MSCs and contribute 
to the migration of MSCs in vitro (43,44). Other studies 
showed that ICAM-1 may play a role in the differentiation 
of MSCs by modulating the mitogen-activated protein 
kinase (MAPK) signaling pathway(45). Furthermore, 
ICAM-1 overexpression was able to modulate the nesting 
of MSCs in the thyroid gland and lungs (44). Together, these 
findings indicated that ICAM-1 plays an important role in 
promoting the homing and immunoregulatory properties 
of MSCs by potentiating the migration and adhesion of 
MSCs in vivo and in vitro. ICAM-1 has been found to 
facilitate the interaction between MSCs and T-cells which 
leads to the suppression of TCR signaling and induces 
immunotolerance by increasing the differentiation of T 
cells into Tregs (46). Engineering MSCs to overexpress 
ICAM-1 has been found to prolong their survival post-
transplantation in graft-versus-host disease (GVHD)  
mouse models (46). The levels of FAK, VEGF, and ICAM-
1 were reduced significantly in MSCs exposed to severe 
hypoxia. The results of our screening study are useful in 
understanding the poor survival of MSCs when there is a 
severe drop in oxygen tension, like that found in ischemic 
heart diseases and ischemic limbic diseases, which may 
reduce the chances of achieving successful therapeutic 
outcomes.  Future studies can investigate the possibility to 
rescue MSCs in severe hypoxia and prolong their survival 
by targeting these migratory and adhesion molecules by 
genetic modifications or using biomaterials. 

Conclusion 
In the current screening study, our data demonstrated 

that severe hypoxic oxygen tension disturbed the adhesion 
and chemokine factors secretion by hMSCs, which leads 
to reduced hMSCs attachment and migration to injured 
tissues and causes the loss of hMSCs at the injection site. 
However, the normoxia condition maintained sufficient 
levels of adhesion factors and chemokines in hMSCs 
leading to prolong the incorporation of MSCs with host 
tissues, which may explain the poor survival of MSCs under 
severe hypoxia compared to normoxia. Further studies 
need to be done to rule out the mechanistic pathways that 
regulate these adhesion factors and chemokines in MSCs 
in different oxygen tension levels, which may help in 
setting up various approaches to improve the homing and 
integration of transplanted MSCs with the host tissues and 
enhance their survival rate. 
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